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Abstract

Background: Decision curve analysis is a method to evaluate prediction models and diagnostic tests that was
introduced in a 2006 publication. Decision curves are now commonly reported in the literature, but there remains
widespread misunderstanding of and confusion about what they mean.

Summary of commentary: In this paper, we present a didactic, step-by-step introduction to interpreting a
decision curve analysis and answer some common questions about the method. We argue that many of the
difficulties with interpreting decision curves can be solved by relabeling the y-axis as “benefit” and the x-axis as
“preference.” A model or test can be recommended for clinical use if it has the highest level of benefit across a
range of clinically reasonable preferences.

Conclusion: Decision curves are readily interpretable if readers and authors follow a few simple guidelines.
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Introduction
Decision curve analysis is a method to evaluate predic-
tion models and diagnostic tests that was introduced by
Vickers and Elkin in a 2006 publication in Medical Deci-
sion Making [1]. The method sought to overcome the
limitations of both traditional statistical metrics, such as
discrimination and calibration, which are not directly in-
formative as to clinical value, and full decision analytic
approaches, which are too unwieldy to be used in regu-
lar biostatistical practice.
In brief, decision curve analysis calculates a clinical

“net benefit” for one or more prediction models or diag-
nostic tests in comparison to default strategies of treat-
ing all or no patients. Net benefit is calculated across a
range of threshold probabilities, defined as the minimum
probability of disease at which further intervention
would be warranted, as net benefit = sensitivity × preva-
lence – (1 – specificity) × (1 – prevalence) × w where w
is the odds at the threshold probability. For a prediction
model that gives predicted probability of disease p̂, sensi-
tivity and specificity at a given threshold probability pt is
calculated by defining test positive as p̂ ≥ pt. Net benefit

differs from accuracy metrics such as discrimination and
calibration because it incorporates the consequences of
the decisions made on the basis of a model or test. For
more on the background to decision curve analysis, see
Vickers et al. [2].
Recent years have seen an explosion of interest in and

practical use of decision curve analysis. The paper has
been widely cited, with > 1000 citations on Google
Scholar as of May 2019. Decision curve analysis has
been recommended by editorials in many top journals,
including JAMA, BMJ, Annals of Internal Medicine,
Journal of Clinical Oncology, and PLoS Medicine [2–6].
That said, there does appear to be widespread misunder-

standing of and confusion about decision curve analysis.
For instance, a well-respected epidemiologist claimed that
he had yet to find more than a couple of people in the
world who could explain what decision curves meant and
that he himself was not clear on their interpretation. We
have also attended meetings where presenters have shown
a decision curve slide and then commented that they them-
selves did not actually understand it.
Here, we present a didactic, step-by-step introduction

to interpreting a decision curve analysis. Each step aims
to give increasing understanding. Mastery of any step
will give at least some insight into a published decision
curve, although understanding all steps will naturally
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provide the greatest insight. In contrast to prior edito-
rials, which are aimed predominately at investigators
wishing to report a decision curve analysis, our main
audience here is readers who wish to understand a pub-
lished decision curve. In this paper, we ask readers to
consider individual patient scenarios, such as a patient
who has young children and is worried about cancer.
Note that such examples are for didactic purposes only:
as pointed out below, decision curves are a research tool
and are not for direct use in the clinic. Note also that we
will not comment further on how to calculate decision
curves, nor comment on their mathematical properties:
readers are referred to the appropriate methodological
literature [1, 7, 8] and to www.decisioncurveanalysis.org
We will use as our main example a study of prostate can-

cer biopsy, a topic that has been subject to several papers
reporting decision curves, with a multi-institutional com-
parison of two prediction models being but one example
[9]. As background, men undergoing screening with
prostate-specific antigen (PSA) are generally advised to
have a biopsy if their PSA is elevated, for instance, a value
of 3 ng/mL or higher. However, only a small proportion of
such men have high-grade cancer, the kind that benefits
from early treatment. In contrast, low-grade cancer is con-
sidered to constitute overdiagnosis, and, of course, no ur-
ologist would recommend a biopsy of a man without
cancer. Researchers have tried to find additional markers
that could predict high-grade cancer in men with elevated
PSA. The idea is that any man with an elevated PSA would
undergo a second test, and only be referred to biopsy if
that indicated a high risk of aggressive disease. In our
hypothetical study, the prevalence of high-grade cancer is
10%. We suppose that the study evaluated both a binary

diagnostic test (sensitivity 40%, specificity 90%) and a stat-
istical prediction model based on several markers that give
an output in terms of a predicted probability of disease and
has an area under the curve (AUC) of 0.79. We calculate
the decision curves following the methods first described
in the Vickers and Elkin paper [1]. We then address some
frequently asked questions about decision curves.

Interpreting a decision curve analysis
Step 1: Benefit is good
Figure 1 shows only the most essential elements of a
decision curve analysis. The result for the prediction
model is the light gray line, and the diagnostic test is
the dashed line. The two other lines are for “interven-
tion for all” (thin black line) and “intervention for
none” (thick black line).
“Intervention” is used in a general sense: it might refer

to drugs or surgery, but it could also encompass lifestyle
advice, additional diagnostic workup, or subsequent
monitoring. Indeed, intervention reflects any action that
a patient at high risk from a model, or getting a positive
result on a diagnostic test, would consider to improve
their health, or their life in general. The exact interven-
tion depends on the clinical setting. In our study of
prostate cancer in men with elevated PSA, intervention
would mean prostate biopsy. To give other examples, in
a study of infection, intervention might be giving antibi-
otics; in a study of heart disease prevention, intervention
might be giving statins. In a study of palliative surgery for
advanced cancer, with an endpoint of death within 3
months; however, the idea would be to avoid surgery in
patients at high risk and intervention would be “best sup-
portive care.” Note that in the original paper, describing

Fig. 1 A decision curve plotting benefit against preference
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decision curve analysis, and in many empirical applica-
tions, the word “treat” is used in place of intervention.
Decision curve analysis includes results for “interven-

tion for all” and “intervention for none” because these
are often reasonable clinical strategies [10, 11]. To give a
specific example, one reasonable strategy in the prostate
biopsy study would be to biopsy all patients with ele-
vated PSA irrespective of the results of the diagnostic
test or prediction model. Indeed, this is generally what
happens in contemporary practice, where men who have
a PSA above a certain threshold are routinely biopsied
without additional testing. On the other hand, we might
imagine a study of men with low PSA, who are not sub-
ject to biopsy in routine clinical practice. Some of these
men do have high-grade prostate cancer, and researchers
might be investigating a suitable test. In this case, the
reference strategy would be “intervention for none.”
On the figure, the y-axis is benefit and the x-axis is

preference. The benefit of a test or model is that it cor-
rectly identifies which patients do and do not have dis-
ease (in our example, high-grade cancer). Preference
refers to how doctors value different outcomes for a
given patient, a decision that is often influenced by a dis-
cussion between the doctor and that patient. Both pref-
erence and benefit are described in further detail below:
at this stage, it is only important to know that benefit is
good and that preferences vary. It is easily seen that the
light gray line, corresponding to the prediction model,
has the highest benefit across a wide range of values of
preference. Hence, we can conclude that, except for a
small range of low preferences, intervening on (i.e., bi-
opsying) patients on the basis of the prediction model
leads to higher benefit than the alternative strategies of
biopsying all patients, biopsying no patients, or only bi-
opsy those patients who are positive on the diagnostic
test. For the prostate biopsy study, the conclusion is that
using the model to determine whether patients should
have a biopsy would lead to improved clinical outcome.

Step 2: Preference refers to how doctors value different
outcomes for their patients
Following a consultation and a discussion with some pa-
tients, a doctor might be particularly worried about
missing disease; for other patients, the doctor may be
more concerned about avoiding unnecessary interven-
tion. Doctors may also vary in their propensity to inter-
vene, some being more conservative, others more
aggressive. In Fig. 1, the extremes of the x-axis for pref-
erence are “I’m worried about disease” and “I’m worried
about biopsy.” In the case of prostate cancer biopsy, a
doctor who, for a given patient, has a preference towards
the left end of the x-axis weighs the relative harm of
missing a high-grade cancer as much greater than the
harm of unnecessary biopsy. This may be, for instance,

because the patient is younger and has school-age chil-
dren, and so very much prioritizes finding any lethal
cancer at a curable stage: this patient is clearly “worried
about disease,” consistent with a low threshold for con-
tinuing diagnostic workup. A doctor with a preference
for a given patient towards the right of the x-axis wants
to avoid biopsy if possible. This might reflect a patient
who does not like the idea of invasive medical proce-
dures or a doctor treating an older patient and who is
skeptical about the value of early detection in that popu-
lation: they are “worried about biopsy” and will opt for
biopsy only if the patient is at particularly high risk.
This helps us take our interpretation a little bit further.

We can see that the model has higher benefit than the
other approaches, apart from doctors who fall in the
“very worried” category, for whom the benefit is actually
slightly higher for the strategy of “intervention for all.”
This makes intuitive sense: a patient with an elevated
PSA who has a strong preference for early identification
of potentially lethal cancer might want to go straight
ahead and get a biopsy rather than depend on a second
model or test that is not 100% accurate.

Step 3: The unit of preference is threshold probability
Our model gives a patient’s predicted probability of
high-grade cancer. One might assume that if the model
estimated the patient’s risk as 1%, both the patient and
the doctor would agree that there was no need for bi-
opsy; if the risk was 99%, however, the doctor would ad-
vise and the patient accept that biopsy was indicated.
Comparable conclusions would be drawn if the risks
were 2% versus 98%. We might imagine that we vary the
risks, counting up from 2% and down from 98% until
the doctor is no longer sure. For instance, a doctor
might say “Thinking about this patient, I wouldn’t do
more than 10 biopsies to find one high-grade cancer in
patients with similar health and who think about the
risks and benefits of biopsy vs. finding cancer in the
same way. So if a patient’s risk was above 10% I do a bi-
opsy, otherwise, I just carefully monitor the patient and
perhaps do a biopsy later if I saw a reason to.”
The relationship between preference and threshold

probability is perhaps the easiest to see when using the
odds. The risk of 10% is an odds of 1:9, so in using a
threshold probability of 10%, the doctor is telling us
“missing a high-grade cancer is 9 times worse than doing
an unnecessary biopsy” [2]. This can be interpreted as
the “number-needed-to-test,” that is, 10% is a number-
needed-to-test of 10. Figure 2 shows threshold probabil-
ities on the x-axis. Odds are also shown for didactic
purposes, although these are omitted when presenting
decision curves. This helps us to understand our previ-
ous conclusion that patients who are particularly wor-
ried about disease do not benefit from using the model.
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We can now see that it is only if threshold probabilities
are less than 2 or 3% that we should avoid using the
model. That would be a stretch in prostate cancer, where
biopsy is invasive, painful, and associated with the risk of
sepsis. However, such a low threshold might be plausible
in some other scenarios, for instance, biopsy for skin
cancer, which is a far less risky and less invasive proced-
ure. Note also that the curve is only plotted up to 20%.
This is because, given the relative risks of missing a
high-grade prostate cancer compared to the harms of bi-
opsy, we would consider it unreasonable for any patient
or doctor to demand greater than 20% risk before
accepting biopsy. The plausible range of thresholds
hence depends critically on context. Elsewhere, we de-
scribe in detail the process by which a reasonable range
of thresholds can be agreed upon [2].

Step 4: Benefit is actually net benefit
Figure 2 also shows the correct units for benefit, what is
known as “net benefit.” The “net” in “net benefit” is the
same as in “net profit,” that is, income minus expend-
iture. If, say, a wine importer buys €1m of wine from
France and sells it in the USA for $1.5m, then if the ex-
change rate is €1 to $1.25, the net profit is income in
dollars (1.5m) − expenditure in euros (1m) × exchange
rate (1.25) = $250,000. Leaving aside, for the sake of sim-
plicity, the issue of risk and the time and trouble to
trade, this is equivalent to being given $250,000 without
having to do any trading. In the case of diagnosis, the in-
come is true positives (e.g., finding a cancer) and the ex-
penditure is false positives (e.g., unnecessary biopsies),
with the “exchange rate” being the number of false posi-
tives that are worth one true positive. The exchange rate

will depend on the relative seriousness of the interven-
tion and outcome. For instance, we will be willing to
conduct more unnecessary biopsies to find one cancer if
the biopsy procedure is safe vs. dangerous or the cancer
is aggressive vs. more indolent. The exchange rate is cal-
culated, as explained above, from the threshold probabil-
ity. Another analogy is with net health benefit or net
monetary benefit, which both depend on the willingness
to pay threshold in their exchange of benefits in terms
of health and costs [12].
The unit of net benefit is true positives. A net benefit

of 0.07, for instance, means “7 true positives for every
100 patients in the target population.” So just like in the
example of net profit for the wine trader, a net benefit of
0.07 would be the equivalent of identifying 7 patients
per 100, all of whom had disease. In the prostate biopsy
example, a 0.07 net benefit would be equivalent to a
strategy where 7 patients per 100 were biopsied and all
were found to have high-grade tumors. Also comparable
to the business example, where a profit of $250,000
could result from various combinations of income and
expenditure, a net benefit of 0.07 could result from dif-
ferent combinations of true and false positives.

Step 5: Net benefit can also be expressed as interventions
avoided
In many scenarios, the most common strategy is to
“intervention for all” rather than to “intervention for
none.” Indeed, this is the case for our prostate cancer
example, where urologists routinely biopsy all patients
with an elevated PSA. In these scenarios, a model or test
would aim to reduce unnecessary intervention. Net
benefit can be expressed in terms of true negatives

Fig. 2 A decision curve plotting net benefit against threshold probability
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rather than true positives. Figure 3 shows an example of
this type of decision curve. This could be interpreted
that, at a risk threshold of 10%, use of the prediction
model would be the equivalent of a strategy that reduced
the number of unnecessary biopsies by about 40 per 100
without missing biopsy for any patients with high-grade
cancer. Expressing net benefit in terms of avoided un-
necessary diagnostic procedures or avoided unnecessary
treatments is recommended if the reference strategy is
“intervention for all.” Note that doing so does not
change any conclusions as to which model or test has
the highest net benefit.

Some common questions about interpreting
decision curves

1. What if we do not know the threshold probability? A
threshold probability is necessary to use any model
or test for decision-making. If our prostate cancer
prediction model gave a predicted risk of, say, 40%,
and no one knew whether that was high or low,
and therefore could not tell whether biopsy was
indicated, then the model could not be used to
make a decision. As a result, the question of using a
decision analytic technique such as decision curve
analysis to evaluate the model would be redundant.

2. How is treatment effect taken into account? In most
decision curves, the effect of treatment is implicit
and is incorporated into the threshold probability.
In general, the more effective the treatment, the
lower the threshold probability: larger treatment
effects imply lower thresholds. In the prostate
cancer example, the diagnosis of high-grade disease
would be considered more important, and hence

probability thresholds would be lower, if diagnosing
and treating high-grade cancer had a larger effect
on life expectancy. As another simple example,
consider a decision curve to predict heart attack,
where patients at high risk are given a prophylactic
drug. Imagine that the drug reduced the relative
risk of a cardiac event by 10% and was associated
with an absolute 1% risk of a serious side-effect
such as a stroke or gastrointestinal hemorrhage.
If we assume that cardiac events and serious side-
effects are equally harmful, then the minimum
threshold probability to justify treatment would be
10%. This is because a 10% relative risk reduction
from 10% is 1% in absolute terms, so the reduction
in the risk of a cardiac event would be the same as
the increase in the risk of stroke. However, if the
drug were more effective, say a 20% relative risk
reduction, then the minimum threshold probability
would be 5%. That said, some models predict not
absolute risk but treatment benefit, that is, “patient
X is predicted to have a 2% absolute reduction in
risk” rather than “patient X has a 20% absolute risk
of the event.” An alternative version of decision
curve analysis is available for such models [13].

3. How much of a difference in curves is enough? In
classical decision theory, the strategy with the
highest expected utility should be chosen,
irrespective of the size or statistical significance of
the benefit. Theoretically, any improvement in net
benefit is therefore worth having. That said, a
straightforward decision analysis does not take into
account the time and trouble required to obtain
data for and implement a model. Now, if a model
required a variable from an invasive medical

Fig. 3 A decision curve plotting decrease in interventions against threshold probability
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procedure associated with non-trivial risk, we would
likely not use the model if it had only a small im-
provement in net benefit. There are two approaches
to this problem. First, as described in the original
paper on net benefit [1], investigators can formally
incorporate harm associated with the model or test
into a decision curve. In brief, the investigators ask:
“if the test/model was perfect, how many patients
would I subject to it in order to find one true case
(e.g., a cancer)?”. The reciprocal of this number is
known as “test harm” and is subtracted from net
benefit. Alternatively, the investigators can look at
differences in net benefit, or interventions avoided,
and make an informal judgment; this is related to
the concept of “test trade-off” [14]. Using the data
shown in Figure 3, one might ask whether it is
worth calculating the model for 100 patients in
order to prevent 39 biopsies, or whether it is worth
using the model rather than the test to prevent 5
biopsies. The answer to those questions depends on
the sort of information required for the model and
for the test, such as whether an invasive, harmful,
or expensive procedure was required.

4. Should there be confidence intervals or p values for
decision curves? Statistical significance and
confidence intervals are not important concepts in
classical decision theory. This can be described in
brief as follows. A decision-maker should start
by considering all reasonable options for a given
decision problem. Which options count as
“reasonable” might well include consideration of
statistical significance. But when choosing between
different options, the most rational choice is
(in general) that with the highest expected utility,
irrespective of statistical significance. As a simple
thought experiment, consider an individual who
had to rush home for an appointment, could take
either one of two bus routes, and happened to have
a dataset of the times for each route. If the mean
times home were 30 vs. 35 min, with similar
distributions and variances, the individual would be
advised to take the quicker route home, even if the
difference was not statistically significant and the
confidence interval for the difference in times
overlapped with zero. As a result, few published
decision curves incorporate confidence intervals.
Confidence intervals may be useful in certain
scenarios, for instance, to determine whether more
research is required. Methods for the calculation
of confidence intervals have been published [7].

5. How can a model be harmful if area under the
curve (AUC) is better than 0.50? If one model has a
better AUC than another, how can it have a worse
net benefit? Net benefit takes into account both

discrimination (AUC) and calibration [15]. To give
a simple example, imagine that we took the
predictions from the prostate cancer and divided by
10. Although this would have no effect on
AUC—patients with a higher risk are more likely
to have high-grade cancer than patients at lower
risk—it would have obvious effects on clinical
value: we might tell a patient at 40% risk that risk
was only 4%. With that risk estimate, he would elect
not to have a biopsy, leading to an important risk
of missing an aggressive cancer.

6. Why is “intervention for all” or “intervention for
none” a relevant comparison? Intervening for all or
no patients, irrespective of test or model results are
reasonable clinical strategies in many scenarios. A
test or model must be found superior to both of
these strategies to justify being used in clinical
practice [10]. There are several examples in the
literature demonstrating the value of comparing
models to intervention for all or no patients. For
instance, Nam et al. [9] found that a prostate biopsy
model had a lower net benefit than biopsying all
men at elevated risk, because the model
underestimated the risk of cancer.

7. Can a decision curve analysis substitute a
traditional decision analysis or cost-effectiveness
analysis? Decision curve analysis is much quicker
and easier than a full decision analysis because it
requires fewer parameters to be specified (indeed,
only one, the reasonable range of threshold
probabilities). However, doing so involves
simplifying assumptions. If the results of the
decision curve analysis are very clear, for instance,
that a model has no benefit, this may obviate the
need for a more complex decision analysis. On the
other hand, if the results are more equivocal, there
may be a case for a decision analysis with a more
completely specified list of parameters for benefits,
harms, and costs.

8. Can you use a decision curve to choose the best
threshold? This is a frequent and fundamental
misunderstanding. Investigators have sometimes
written statements such as “the model was superior
in the range 30 – 40%; therefore patients should
choose intervention if their probability from the
model is greater than 30 – 40%.” This reverses the
relationship between threshold probability and
evaluation of a model. Investigators should first
work out a clinically reasonable range of threshold
probabilities, based on considering the relative
harms of avoid intervention for a patient with
disease versus unnecessarily intervening on a
patient who is disease free. They should then
determine whether the net benefit of their model
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or test is better than alternatives across this range
of threshold probabilities.

9. How do you use a decision curve analysis in the
clinic? A decision curve analysis has no more direct
clinical applicability than, say, the p value and
overall absolute risk reduction from a trial of a new
drug. In the drug trial, a p value might be used to
conclude “the drug works” and the overall absolute
risk reduction to judge that “the benefit of the drug
outweighs the harms.” In such a case, a doctor
would then give the drug to patients where
indicated, without looking up the trial results each
time. In a similar way, a decision curve is used to
evaluate whether a model or test would be of
benefit in the clinic. If results are positive, then the
model or test can be used with appropriate patients
as part of shared decision-making without any need
to refer back to the original decision curve.

10. Do I need to know the threshold probability for an
individual patient before I use the results of a
decision curve and use the results of a test or model?
This is not how decision curves are intended to be
used. If a model or test has the highest net benefit
across the entire range of reasonable threshold
probabilities, then clearly that model or test should
be used irrespective of patient preference. If the
optimal approach depends on the threshold
probability, then the typical conclusion would be that
the model or test is of unproven benefit or that it is
only useful in settings where we assume a specific
range of preferences. A more formal decision analysis
might involve elicitation of individual preferences
from a study sample and integration of utilities across
a distribution of these preferences.

Conclusion
A PubMed search for “decision analysis” restricted to
2017 retrieves 311 papers; a comparable search for “deci-
sion curve analysis” retrieves 95. Given that few of deci-
sion curve papers would have involved a decision analytic
methodology if not for the availability of a straightforward
analytic technique, this means that decision curve analysis
is responsible for an important increase in the use of deci-
sion analysis in the medical literature. A greater under-
standing of decision curve analysis is therefore not
only of inherent value, but will also lead to a greater
appreciation of decision analytic principles in the re-
search community as a whole.
When investigators have indicated to us that “deci-

sion curve analysis is hard to understand,” it is clear
that this confusion centers on the metric rather than
the methodology. Calculating a decision curve requires
only the most trivial math [1], but the two axes—

threshold probability and net benefit—are concepts that
are novel to many.
We hope that this didactic overview will aid in the in-

terpretation of decision curve analysis and ensure that
the basic concepts underpinning decision curves are
more widely understood.
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