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Abstract 

Background  Transplantation represents the optimal treatment for many patients with end-stage kidney disease. 
When a donor kidney is available to a waitlisted patient, clinicians responsible for the care of the potential recipient 
must make the decision to accept or decline the offer based upon complex and variable information about the donor, 
the recipient and the transplant process. A clinical prediction model may be able to support clinicians in their 
decision-making. The Kidney Donor Risk Index (KDRI) was developed in the United States to predict graft failure 
following kidney transplantation. The survival process following transplantation consists of semi-competing events 
where death precludes graft failure, but not vice-versa.

Methods  We externally validated the KDRI in the UK kidney transplant population and assessed whether vali‑
dation under a semi-competing risks framework impacted predictive performance. Additionally, we explored 
whether the KDRI requires updating. We included 20,035 adult recipients of first, deceased donor, single, kidney-only 
transplants between January 1, 2004, and December 31, 2018, collected by the UK Transplant Registry and held 
by NHS Blood and Transplant. The outcomes of interest were 1- and 5-year graft failure following transplantation. 
In light of the semi-competing events, recipient death was handled in two ways: censoring patients at the time 
of death and modelling death as a competing event. Cox proportional hazard models were used to validate the KDRI 
when censoring graft failure by death, and cause-specific Cox models were used to account for death as a competing 
event.

Results  The KDRI underestimated event probabilities for those at higher risk of graft failure. For 5-year graft fail‑
ure, discrimination was poorer in the semi-competing risks model (0.625, 95% CI 0.611 to 0.640;0.611, 95% CI 0.597 
to 0.625), but predictions were more accurate (Brier score 0.117, 95% CI 0.112 to 0.121; 0.114, 95% CI 0.109 to 0.118). 
Calibration plots were similar regardless of whether the death was modelled as a competing event or not. Updating 
the KDRI worsened calibration, but marginally improved discrimination.

Conclusions  Predictive performance for 1-year graft failure was similar between death-censored and competing 
event graft failure, but differences appeared when predicting 5-year graft failure. The updated index did not have 
superior performance and we conclude that updating the KDRI in the present form is not required.
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Introduction
For many patients with end-stage kidney disease, trans-
plantation represents the optimal treatment. The demand 
for deceased donor kidneys in the United Kingdom (UK) 
greatly outweighs availability [1]. It is therefore essen-
tial to maximise the number of successful transplants in 
order to reduce the number of recipients returning to 
the transplant waiting list or dialysis. A prediction model 
may provide support to clinicians charged with deciding 
whether to accept the offer of a donor kidney for an indi-
vidual patient. Such models can incorporate a large num-
ber of donor, recipient and transplant-related factors to 
produce personalised risk predictions.

In the United States (US), the Kidney Donor Risk Index 
(KDRI), proposed by Rao et al. [2], is used as part of the 
allocation process for deceased donor kidneys to those 
awaiting a kidney transplant. It was originally developed 
to predict graft failure in first-time, kidney-only, adult 
transplants with the intention of being used as a deci-
sion-making tool at the time of a donor kidney offer. The 
risk index uses 13 donor-related parameters that would 
be known by the clinician at the time of the offer includ-
ing age, height, weight and history of hypertension and 
diabetes.

The scientific and clinical practices underpinning the 
delivery of transplantation services have evolved over 
time. Further variation exists between different units 
and countries. As such, prediction models developed 
in a particular country may not be reliably applicable to 
populations in other countries in the future. It is there-
fore essential to externally validate proposed prediction 
models when considering their use in different popula-
tions and to revisit these validations over time [3–5].

We sought to validate the predictive performance of 
the KDRI in the UK kidney transplantation population. 
In our systematic review [6], we found that the KDRI has 
been validated in different populations across the globe 
[7–15]. In the UK, Watson et al. [14] assessed its perfor-
mance in transplants performed between 2000 and 2007. 
The KDRI showed moderate discrimination in predicting 
the earliest of graft failure and death (C-index 0.63). The 
calibration has not previously been assessed in the UK 
kidney transplant population.

The survival process following transplantation consists 
of semi-competing events, where a terminal event pre-
cludes the observation of a non-terminal event, but not 
vice-versa. Specifically, in the context of kidney trans-
plant survival outcomes, once a patient has died, we can 

no longer observe whether they experience graft failure. 
However, if a patient suffered graft failure, then we could 
still observe their death. In the existing literature on pre-
diction models for graft failure, death is often not treated 
as a competing event, rather graft failure is censored by 
death or they are combined to predict a composite event.

The original KDRI defined graft failure as the earliest 
of graft failure or death. Predicting a composite outcome 
assumes that predictors have the same effect on both 
outcomes of interest [16], and in doing so, researchers 
shift the attention from the primary clinical endpoint of 
the proposed prediction model to one that may not be of 
clinical interest. Censoring the primary event of interest 
by the competing event violates the assumption of non-
informative censoring typically used in standard time-
to-event methods and can lead to bias in the cumulative 
incidence estimator, such that the sum of the individual 
event estimators exceeds the estimator of the composite 
event [17, 18]. Recent work has also noted the impor-
tance of accounting for competing events in external vali-
dation studies as well as in model development [19, 20].

The aim of this study was to externally validate the 
KDRI in the UK kidney transplantation adult population. 
Additionally, we aimed to explore whether modelling 
death as a competing event, rather than censoring recipi-
ents at the time of death, influences the predictive perfor-
mance of the KDRI. Furthermore, we assessed whether 
updating the KDRI was required to improve predictions 
for graft failure.

Methods
This study was reported in accordance with the Trans-
parent reporting of a multivariable prediction model for 
Individual Prognosis or Diagnosis (TRIPOD) statement 
[21].

Source of data
This was a cohort study based on a registry database col-
lected by the UK Transplant Registry (UKTR) and held 
by NHS Blood and Transplant (NHSBT). Recipients were 
transplanted in the UK between January 1, 2004, and 
December 31, 2018. Recipients were followed-up until 
March 31, 2021.

Participants
Adult recipients (aged 18  years and above) of a first, 
deceased donor, single, kidney-only transplant were 
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included. Where recipients have had multiple transplants 
within the study period, only their first one was used for 
analysis. Recipients of en bloc, or multiple organ trans-
plants (such as combined kidney and pancreas trans-
plants), were not included.

Outcomes
We assessed the performance of the KDRI for predicting 
graft failure 1  year and 5  years following kidney trans-
plantation. Graft failure was defined as the time from 
transplantation until either return to dialysis or re-trans-
plantation. In light of the semi-competing events, recipi-
ent death was handled in two ways: censoring patients 
at the time of death and modelling death as a competing 
event. The original KDRI was intended to predict graft 
failure; however, the model was developed to predict 
a composite outcome of time to the earliest of death or 
graft failure.

Missing data
Recipients with both event time and indicator miss-
ing were excluded from the analysis. Missing values for 
donor height, weight, ethnicity, history of hypertension, 
history of diabetes, cause of death (cerebrovascular acci-
dent or not), creatinine value and hepatitis C virus status 
were imputed using multiple imputations with chained 
equations [22], assuming that the data were missing at 
random. None of the donors were missing age or type 
(deceased cardiac or deceased brain donor). Hence, these 
variables were not imputed but were included in the 
imputation model, along with the Aalen-Johansen esti-
mates for the cumulative hazard. Continuous variables 
were imputed using predictive mean matching to ensure 
that implausible values were not imputed, such as nega-
tive values for height and weight.

12.78% of the patients had incomplete information for 
calculating the KDRI; therefore, we determined at least 
thirteen imputed data sets were required [23]. Fifteen 
imputed data sets were generated. For continuous variables, 
imputations were checked by comparing the distributions 
between imputed data sets. For binary and categorical vari-
ables, we checked whether the counts were similar between 
imputations (see Supplementary Material).

Parameter estimates and model performance meas-
ures, along with the associated standard errors, were 
pooled across the imputed data sets according to Rubin’s 
rules [24]. These pooled estimates and standard errors 
were used to construct 95% confidence intervals using 
the 97.5th quantile of the t-distribution.

Sample size
The suitability of the sample size was determined accord-
ing to the methods of Riley et al. [25]. While the sample 

size for this study was fixed (20,035 recipients), we also 
explored the mean standard error of the calibration slope 
for a range of sample sizes. These, along with further 
details on the sample size calculation, can be found in the 
Supplementary Material.

In the development article [2], the KDRI was split into 
quintiles, and Kaplan–Meier curves of the probability of 
graft survival were reported for each. We read the sur-
vival probabilities for the minimum and maximum quan-
tiles and explored the sample size required for survival 
probabilities within that range. For 1-year graft failure, 
we considered survival probabilities 0.875, 0.901, 0.927 
and 0.953, and for 5-year graft failure 0.635, 0.697, 0.760 
and 0.822.

For 1- and 5-year graft failure, the mean standard error 
for the calibration slope varied between 0.053 and 0.092, 
and 0.036 and 0.051, respectively, for the survival prob-
abilities under consideration (Table 1). We deemed these 
to be acceptable.

Summary statistics
The median time to graft failure was calculated using 
the Kaplan–Meier method, whereby the median time is 
given by the time at which the probability of survival is 
0.5. Median follow-up times were calculated using the 
reverse Kaplan–Meier method. This is similar to the 
Kaplan–Meier method except the censoring indicator is 
treated as an event indicator.

Model performance
Discrimination
Discrimination measures the rank separation between 
those who experience the outcome of interest and those 
who do not. For example, a model that discriminates well 

Table 1  Mean standard error of calibration slope from a 
simulation study of size 500, assuming a sample size of 20,000

The linear predictor was assumed to follow Log-Norm(log(1.05), 0.42487)

Survival probability Event time 
distribution rate

Mean calibration 
slope standard 
error

1-year graft failure
  0.875 0.118 0.053

  0.901 0.092 0.061

  0.927 0.067 0.074

  0.953 0.042 0.092

5-year graft failure
  0.635 0.083 0.036

  0.697 0.065 0.039

  0.760 0.049 0.044

  0.822 0.035 0.051
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will predict a higher risk for a recipient that experiences 
graft failure than one who does not.

The discrimination was assessed using the time-
dependent area under the receiver operating characteris-
tic curve (AUC) [26]. Values typically range between 0.5 
and 1, where 1 indicates perfect discrimination and 0.5 
shows that predictions are as accurate as flipping a coin.

Calibration
Calibration is used to measure the agreement between 
observed and predicted risks. Here, we used the observed 
event proportion as a proxy for observed risk. As some 
patients were censored prior to the event time horizon, it 
was not possible to calculate the observed event proportion. 
To overcome this, we used a jack-knife approach to calculate 
pseudo-observations, which were then used as proxy meas-
ures of event indicators for censored patients [27].

Calibration plots using pseudo-observations with local 
weighted regression smoothing were assessed in each 
imputed dataset. For models that are well calibrated, 
the smoothed curve lies on the diagonal line that runs 
through the origin. Further, we calculated the calibra-
tion slope, where a value equal to one indicates perfect 
calibration. A calibration slope less than 1 suggests that 
predictions are too high for recipients with high event 
probabilities and too low for those with low probabilities. 
Conversely, a calibration slope greater than 1 suggests 
that recipients with high observed risk are under-esti-
mated, and those with low observed risk are over-esti-
mated. The calibration slope was calculated using a 
generalised linear model with pseudo-observations as the 
outcome and the complementary log–log transformed 
predicted risks as both an offset and covariate [27, 28]. 
The coefficient of the transformed risks indicates how far 
the calibration slope differs from 1; thus, the calibration 
slope is given by summing these two values.

Given that the baseline survival value for 1 and 5 years 
following transplantation was not reported in the original 
article, it was calculated within the UKTR data. Conse-
quently, the calibration may appear more optimistic since 
the baseline cumulative incidence, which is required to 
calculate the absolute risk of graft failure, was estimated 
in the same cohort.

Overall prediction accuracy
The Brier score measures prediction error by estimating 
the squared difference between the event indicator and 
estimated risk [29]. Values closer to zero indicate a more 
accurate prediction model.

Validation of the KDRI
The KDRI [2] can be calculated using

where I[.] is an indicator function which is equal to 1 if the 
criteria in [.] are satisfied and 0 otherwise. The KDRI origi-
nally derived by Rao et al. also considered transplant-related 
factors, such as cold ischaemic time, human leukocyte anti-
gen mismatch and whether it was an en bloc or double kid-
ney transplant. In practice, only the donor-related factors 
are used to calculate the KDRI [30]. With this in mind, we 
validated the donor-only KDRI. For each recipient, we cal-
culated the linear predictor of the KDRI, by applying the 
natural logarithm to the index. Cox proportional hazards 
models [31] were used to assess the performance of the 
KDRI for predicting death-censored graft failure. In the 
presence of competing events, the Cox model can lead to 
biassed risk estimation. As alternatives, researchers typi-
cally use either the cause-specific Cox [32] or the Fine-Gray 
model [33]. The Fine-Gray model is often preferred when 
the goal is prediction rather than association [34]. How-
ever, in some instances, it is possible for the sum of patient-
specific event probabilities, which should be constrained 
between zero and one, to exceed one [35]. Therefore, we 
used the cause-specific Cox models to validate the KDRI 
when accounting for death as a competing event.

Updating the KDRI
To assess whether the KDRI required updating, we re-
estimated the coefficients used in the original index. For 
the KDRI to be applicable in the UK cohort, we substi-
tuted African American ethnicity for Black ethnic origin. 
Variables were centred in the same way that they were in 
the original KDRI, and no further variable selection was 
undertaken. We re-estimated the coefficients by censor-
ing graft failure at the time of death using a Cox pro-
portional hazards model and accounting for death as a 
competing event using a cause-specific Cox model.

The coefficients were re-estimated in each of the 15 
imputed datasets, and the performance of those updated 
models was individually assessed. The re-estimated coef-
ficients and performance measures were then pooled 
according to Rubin’s rules.

KDRI = exp {−0.0194I[age < 18yr] age− 18yr + 0.0128 age− 40

+ 0.0107I[age > 50] age− 50 −
0.0464 height − 170

10

−
0.0199I[weight < 80] weight − 80

5

+ 0.1790I[ethnicity African American]

+ 0.1260I[history of hypertension]+ 0.1300I[history of diabetes]

+ 0.0881I cause of death cerebrovascular accident CVA

+ 0.2200(creatinine− 1)

− 0.2090I[creatinine > 1.5](creatinine− 1.5)

+ 0.2400I[Hepatitis C virus(HCV) positive]

+ 0.1330I[deceased cardiac donor (DCD)]},
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When updating the KDRI, we assessed the predic-
tive performance in the same group of recipients that 
were used to update the KDRI. This will naturally pro-
duce optimistic results. To account for optimism in the 
numerical summaries of predictive performance, we 
used Harrell’s bias correction method [36], with 100 
bootstrap samples. Calibration plots were not adjusted 
for optimism thus represent the apparent calibration.

Software
Multiple imputation was performed using Stata/MP 16.1 
[37]. All other analyses were conducted in R 4.1.2 [38].

Results
Summary statistics
In total 20,134 deceased donor single kidney-only recipi-
ents who received a transplant between January 1, 2004, 
and December 31, 2018, in the UK were eligible for inclu-
sion (Fig.  1). Eleven of the recipients had missing time-
to-event information for both graft failure and death, and 
88 missing for graft failure only. Therefore 20,035 trans-
plants were included in our analysis.

The end of the follow-up period was March 31, 2021. 
The median follow-up time was 5.96  years, and the 

maximum follow-up time was 17.05 years. The minimum 
probability of survival for graft failure and for death was 
both above 0.5; hence, we did not observe the median 
survival time for either outcome in this study. At the end 
of the follow-up period, 13,724 (68.50%) recipients were 
alive with a functioning graft. 2675 (13.35%) recipients 
experienced graft failure only, and 904 (4.51%) died fol-
lowing graft failure. 2732 (13.64%) recipients died with a 
functioning graft (Fig. 1).

By the end of the first year following transplanta-
tion 1050 (5.24%) recipients had experienced graft fail-
ure only, and 186 (0.93%) died following graft failure. A 
total of 497 (2.48%) recipients had died with a function-
ing graft. By 5 years, 1936 (9.66%) recipients experienced 
graft failure alone, and 456 (2.28%) died following graft 
failure. 1509 (7.53%) transplant recipients died with a 
functioning graft.

A summary of the donor characteristics used to calcu-
late the KDRI, including the number of missing values, is 
presented in Table  2, and a summary of recipient char-
acteristics can be found in the Supplementary Material. 
Donors were aged between 1 and 85 years old, where 626 
(3.13%) were younger than 18  years of age and 10,925 
(54.53%) were older than 50. 10,646 (53.14%) donors 

Fig. 1  Flowchart of eligible transplant recipients for inclusion in analyses. GF graft failure
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weighed less than 80  kg. Creatinine was greater than 
1.5 mg/dl for 1720 (8.59%) donors.

No values were missing for donor age and type of 
donor. 1688 (8.43%) donors had missing values for cre-
atinine, the most of any variables required for calculating 
the KDRI. 2560 (12.78%) were missing at least one value 
required to calculate the KDRI.

The distribution of the KDRI in the original article by 
Rao et al. [2] was similar in shape to that of the transplants 
included in this analysis (Fig. 2). However, median KDRI 
values were higher in the UK cohort; 1.32 compared with 
1.05 in the US cohort used to develop the index.

External validation of the KDRI
One‑year graft failure
The KDRI discriminated moderately well for predicting 
1-year graft failure. The time-dependent AUC was 0.607 

(95% CI 0.589 to 0.625) and 0.610 (95% CI 0.592 to 0.628) 
with and without accounting for competing events, 
respectively (Table 3).

Calibration plots and slopes were similar when model-
ling graft failure while censoring for death and death as a 
competing event (Fig. 3a, b, Table 3). The KDRI was well 
calibrated for recipients with predicted risks less than 
10%, but calibration was worse for those with predicted 
risks above this value. Only 1100 (5.5%) were at a higher 
risk than 10%, and for those, the KDRI underestimated 
the risk of graft failure. Calibration slopes were, respec-
tively, 1.074 (95% CI 0.878 to 1.271) and 1.074 (95% CI 
0.877 to 1.272) for predicting death-censored and com-
peting event graft failure.

Predictive accuracy was the same regardless of whether 
death was handled as a competing event or not with 
reported Brier scores equal to 0.058 for both types of 
outcomes.

Five‑year graft failure
Five years following kidney transplantation the time-
dependent AUC was slightly lower when predicting graft 
failure with death as a competing event (0.611, 95% CI 
0.597 to 0.625) as opposed to censoring at the time of 
death (0.625, 95% CI 0.611 to 0.640).

Using calibration plots, predicted risks using the 
KDRI were generally similar to the observed proportion 
of recipients who experienced graft failure (Fig.  4a, b). 
Calibration was poorest for those at higher risk of graft 
failure. The risk of graft failure was underestimated for 
recipients at a higher risk. The calibration slopes were 
0.964 (95% CI 0.827 to 1.100) when censoring recipients 
at the time of death and 0.979 (95% CI 0.835 to 1.123) 
when modelling death as a competing event.

Predictions were less accurate for 5  years compared 
with a 1-year graft failure. Brier scores differed for 
death-censored and competing event graft failure (0.117, 
95% CI 0.112 to 0.121 and 0.114, 95% CI 0.109 to 0.118, 
respectively).

Updating the KDRI
To update the KDRI, we re-estimated the coefficients 
used in the original index in the UK kidney transplant 
population. No additional predictors were considered. In 
the updated models, the estimates were similar regard-
less of whether the death was modelled as a competing 
event or not (Table 4). Confidence intervals for the effect 
of ethnicity were much wider than in the original index, 
likely because only 1.11% of donors were of Black ethnic 
origin.

The effect of age for those under 18 and over 
50  years and height was not found to be associated 

Table 2  Characteristics of donor patients in the UK kidney 
transplant population between January 1, 2004, and December 
31, 2018

Numerical summaries of variables used to calculate the Kidney Donor Risk Index, 
including the number (and percentage) of missing values

CVA cerebrovascular accident, HCV hepatitis C virus, DCD deceased cardiac 
donor, DBD deceased brain donor

Variable Mean [SD] or N (%) Missing (%)

Age, years 49.91 [15.44] 0 (0)

Height, cm 170.29 [10.80] 269 (1.34)

Weight, kg 77.96 [17.77] 130 (0.65)

Ethnicity 63 (0.31)

  Asian 372 (1.86)

  Black 222 (1.11)

  Chinese/oriental 56 (0.28)

  Mixed 148 (0.74)

  Other 160 (0.80)

  White 19,014 (94.90)

History of hypertension 716 (3.57)

  Yes 5296 (26.43)

  No 14,023 (69.99)

History of diabetes 527 (2.63)

  Yes 1275 (6.36)

  No 18,233 (91.01)

Cause of death 161 (0.80)

  CVA 741 (3.70)

  Not CVA 19,133 (95.50)

Creatinine, mg/dl 0.95 [0.60] 1688 (8.43)

HCV test result 63 (0.32)

  Positive 21 (0.10)

  Negative 19,951 (99.58)

Donor type 0 (0)

  DCD 7517 (37.52)

  DBD 12,518 (62.48)
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with graft failure. Additionally, donor ethnicity and 
donor HCV status were not significantly associated 
with graft survival.

One‑year graft failure
Discrimination was similar for predicting death-cen-
sored graft failure (time-dependent AUC 0.614) and 
graft failure with death as a competing event (time-
dependent AUC 0.608) (Table 5).

Calibration slopes were 1.096 when censoring at the 
time of death and 1.068 when modelling death as a com-
peting event. Calibration plots were similar for both 
types of graft failure and clearly showed that low risks 
were over-estimated and high risks were under-estimated 

(Fig. 3c, d). There was no difference in prediction accu-
racy whether accounting for death as a competing event 
or not, with Brier scores equal to 0.058 for both cases.

Five‑year graft failure
Discrimination was lower when modelling graft failure 
with death as a competing event (time-dependent AUC 
0.629 and 0.612, respectively) for the updated index 
(Table 5).

We found calibration slopes were 1.016 for death-
censored graft failure and 1.002 when modelling death 
as a competing event. The calibration plots (Fig.  4c, d) 
showed miscalibration for recipients at the highest and 
lowest predicted risks, and 95% confidence intervals were 
much wider at the tails of the curve.

Prediction accuracy was slightly improved when mod-
elling death as a competing event compared to censoring 
at the time of death with Brier scores equal to 0.114 and 
0.117, respectively.

Discussion
Principal findings
In external validation, the KDRI had moderate discrimi-
nation and was generally well calibrated for predicting 
graft failure 1  year and 5  years following kidney trans-
plantation. For predicting 1-year graft failure discrimi-
nation, calibration and predictive accuracy did not differ 
depending on how death prior to graft failure was han-
dled. Discrimination was higher for predicting 5-year 
graft failure. Predictions were more accurate for early 

Fig. 2  Distribution of the original Kidney Donor Risk Index in UK kidney transplantation population

Table 3  Numerical summary of the performance of the original 
Kidney Donor Risk Index for predicting graft failure 1  year and 
5 years following transplantation while censoring for death and 
modelling death as a competing event

T-D AUC​ time-dependent area under receiver operating curve, CI confidence 
interval

Censoring at the 
time of death

Accounting for death 
as a competing event

One-year graft failure

  T-D AUC (95% CI) 0.610 (0.592, 0.628) 0.607 (0.589, 0.625)

  Calibration slope (95% CI) 1.074 (0.878, 1.271) 1.074 (0.877, 1.272)

  Brier Score (95% CI) 0.058 (0.055, 0.062) 0.058 (0.054, 0.061)

Five-year graft failure

  T-D AUC (95% CI) 0.625 (0.611, 0.640) 0.611 (0.597, 0.625)

  Calibration slope (95% CI) 0.964 (0.827, 1.100) 0.979 (0.835, 1.123)

  Brier Score (95% CI) 0.117 (0.112, 0.121) 0.114 (0.109, 0.118)
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graft failure compared to those at 5  years following 
transplantation.

Calibration slopes indicated miscalibration in the 
KDRI; however, the corresponding 95% confidence inter-
vals were wide. In calibration plots for both outcomes, 
miscalibration was mainly driven by recipients at higher 
risk, where the event probabilities were generally under-
estimated. However, it should be noted that the baseline 
survival was not reported in the original article and as 

such has been estimated within the same cohort as  it is 
being validated in. Therefore, the calibration of the KDRI 
in the UK kidney transplant population may be more 
optimistic.

Updating the KDRI in the UK kidney transplant popu-
lation yielded similar coefficients, but some prognostic 
factors were no longer associated with graft failure. Given 
that the coefficient estimates did not differ between the 
Cox and the cause-specific Cox models, it is unsurprising 

Fig. 3  Calibration plots for the original and updated KDRI for predicting 1-year graft failure. The left panels show graft failure censoring at the time 
of death, and the right panels treat death as a competing event. Below each plot is a histogram of predicted risks. The dashed red line indicates 
perfect calibration
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that there was little difference between the predictive 
performance of those models.

Strengths and limitations
To our knowledge, this is the first study to assess the perfor-
mance of the KDRI under a semi-competing risks frame-
work for first, deceased donor, single, kidney-only and adult 

transplants. Our work included all eligible kidney trans-
plants that occurred in the UK during the study period, 
with a long follow-up period. The KDRI was previously val-
idated in the UK by Watson et al. [14] using information on 
kidney transplants that occurred between 2000 and 2007. 
Therefore, our work serves to assess whether the KDRI is 
still relevant in the UK kidney transplant population.

Fig. 4  Calibration plots for the original and updated KDRI for predicting 5-year graft failure. The left panels show graft failure censoring at the time 
of death, and the right panels treat death as a competing event. Below each plot is a histogram of predicted risks. The dashed red line indicates 
perfect calibration
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The baseline survivor function was recalibrated for our 
cohort; therefore, calibration may seem more optimistic 
in this external validation of the KDRI. From the current 
analyses, we cannot comment on the clinical utility of the 
index in the UK kidney transplant population. Further 
work is required to determine whether the KDRI is clini-
cally relevant in practice.

Few recipients experienced a competing event (died 
with a functioning graft), which may explain why little 
difference was found in predictive performance when 
considering death as a competing event and censoring 
graft failure at the time of death. There is a lack of guid-
ance concerning under what situation ignoring the com-
peting risk elements can impact the performance of the 
prediction models. Externally validating and updating 
a model under the competing risk framework serves as 
a sensitivity analysis to evaluate the developed models 
which ignore the competing risk elements. Future work 
could explore to what extent the proportion of non-ter-
minal events censored by the terminal events impacts 

Table 4  Coefficients (and 95% confidence intervals) of the variables used to calculate the Kidney Donor Risk Index from the original 
development, the updated Cox proportional hazards model and the updated cause-specific Cox model

Variables are centred as they were in the original publication

CVA cerebrovascular accident, DBD deceased brain donor, DCD deceased cardiac donor

Variable Original Updated (Cox model) Updated (cause-
specific Cox model)

Age-18; for donors under 18 years − 0.019 (− 0.031, − 0.010) − 0.032 (− 0.096, 0.033) − 0.031 (− 0.095, 0.033)

Age-40, years 0.013 (0.011, 0.015) 0.016 (0.009, 0.024) 0.016 (0.009, 0.024)

Age-50; for donors over 50 years 0.011 (0.005, 0.016) 0.003 (− 0.010, 0.016) 0.003 (− 0.010, 0.016)

Height per 10 cm increase − 0.046 (− 0.062, − 0.031) − 0.034 (− 0.093, 0.026) − 0.034 (− 0.093, 0.026)

Weight per 5 kg increase; for donors below 80 kg − 0.020 (− 0.031, − 0.010) − 0.035 (− 0.068, − 0.002) − 0.035 (− 0.068, − 0.002)

Ethnicity

  Not Black ethnic origin Reference

  Black ethnic origin 0.179 (0.122, 0.239) 0.409 (− 0.017, 0.835) 0.405 (− 0.021, 0.832)

History of hypertension

  No Reference

  Yes 0.126 (0.077, 0.174) 0.256 (0.135, 0.378) 0.255 (0.133, 0.376)

History of diabetes

  No Reference

  Yes 0.130 (0.039, 0.215) 0.154 (− 0.050, 0.358) 0.153 (− 0.051, 0.357)

Cause of death CVA

  No Reference

  Yes 0.088 (0.039, 0.131)  − 0.035 (− 0.308, 0.238)  − 0.036 (− 0.309, 0.237)

Creatinine-1, mg/dl 0.220 (0.157, 0.285) 0.395 (0.205, 0.586) 0.395 (0.204, 0.586)

Creatinine-1; for donors with creatinine > 1.5, mg/dl  − 0.209 (− 0.301, − 0.117)  − 0.500 (− 0.819, − 0.182)  − 0.500 (− 0.818, − 0.181)

HCV

  Negative Reference

  Positive 0.240 (0.122, 0.358) 0.233 (− 1.286, 1.751) 0.234 (− 1.284, 1.753)

Donor type

  DBD Reference

  DCD 0.133 (0.020, 0.247) 0.113 (0.005, 0.221) 0.112 (0.004, 0.220)

Table 5  Numerical summary of the performance of the updated 
Kidney Donor Risk Index for predicting graft failure 1  year and 
5 years following transplantation while censoring for death and 
modelling death as a competing event

T-D AUC​ time-dependent area under receiver operating curve

Censoring at the 
time of death

Accounting for death 
as a competing event

One-year graft failure

  T-D AUC (optimism) 0.614 (− 0.00015) 0.608 (0.00252)

  Calibration slope (optimism) 1.096 (− 0.00049) 1.068 (0.02812)

  Brier score (optimism) 0.058 (− 0.00004) 0.058 (− 0.00007)

Five-year graft failure

  T-D AUC (optimism) 0.629 (− 0.00019) 0.612 (0.00254)

  Calibration slope (optimism) 1.016 (− 0.00133) 1.002 (0.02911)

  Brier score (optimism) 0.117 (0.00006) 0.114 (− 0.00010)
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the predictive performance. This can potentially lead to 
recommendations for practice for when it is necessary 
to account for competing events and when traditional 
methods, such as the Cox proportional hazards model, 
might suffice.

Results in context
The KDRI only considers donor-related variables to pre-
dict graft failure in the recipient of the kidney transplant. 
Additional donor variables may improve predictive per-
formance. The Maryland Aggregate Pathology Index 
(MAPI) [39], for example, utilises information gathered 
from biopsies of donor kidneys and has shown higher 
discrimination in internal and external validation [9, 40]. 
Such additional information may be able to improve per-
formance. However, it may not be practical in a decision-
making tool since, in the UK, this information may not be 
known at the time of the offer of a donor kidney. Addi-
tionally, utilising information about the recipient and the 
transplant process, or other existing indices which incor-
porate these variables, could also improve predictions.

A validation study in the US [9] evaluated the pre-
dictive performance of the KDRI 2  years following 
transplantation and showed poor discrimination with 
time-dependent AUC equal to 0.45. External validation 
in Australia and New Zealand [15] reported C-index 0.63 
(95% CI 0.60 to 0.65) for predicting death-censored graft 
failure. In Canada, the KDRI showed moderate discrimi-
nation with C-index equal to 0.59 [13]. The KDRI was 
previously validated using data from kidney transplants 
performed in the UK between 2000 and 2007 [14] and 
reported a C-index of 0.63.

Zhong et  al. [41] also assessed whether the original 
KDRI required updating using information on kidney 
transplants performed between 2000 and 2016 in the US. 
Their updated index showed marginally higher discrimi-
nation than the original KDRI (original KDRI C-index 
0.651; updated KDRI C-index 0.652); however, the cali-
bration was not assessed. This study also determined that 
there is little to be gained in updating the KDRI.

Conclusions
The Kidney Donor Risk Index, originally developed in 
the US population, showed moderate predictive perfor-
mance overall in our external validation in the UK kid-
ney transplant population. The use of a semi-competing 
risks framework made a slight difference when predict-
ing 5-year graft failure compared to censoring for death. 
The updated index had slightly improved discrimination 
but was poorly calibrated for those with the highest and 
lowest risk of graft failure. Therefore, we conclude that 
updating the KDRI in the present form is not required.
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