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Abstract 

Background  A previous individual participant data meta-analysis (IPD-MA) of antibiotics for adults with clinically 
diagnosed acute rhinosinusitis (ARS) showed a marginal overall effect of antibiotics, but was unable to identify 
patients that are most likely to benefit from antibiotics when applying conventional (i.e. univariable or one-variable-
at-a-time) subgroup analysis. We updated the systematic review and investigated whether multivariable prediction 
of patient-level prognosis and antibiotic treatment effect may lead to more tailored treatment assignment in adults 
presenting to primary care with ARS.

Methods  An IPD-MA of nine double-blind placebo-controlled trials of antibiotic treatment (n=2539) was conducted, 
with the probability of being cured at 8–15 days as the primary outcome. A logistic mixed effects model was devel-
oped to predict the probability of being cured based on demographic characteristics, signs and symptoms, and anti-
biotic treatment assignment. Predictive performance was quantified based on internal-external cross-validation 
in terms of calibration and discrimination performance, overall model fit, and the accuracy of individual predictions.

Results  Results indicate that the prognosis with respect to risk of cure could not be reliably predicted (c-statistic 0.58 
and Brier score 0.24). Similarly, patient-level treatment effect predictions did not reliably distinguish between those 
that did and did not benefit from antibiotics (c-for-benefit 0.50).

Conclusions  In conclusion, multivariable prediction based on patient demographics and common signs and symp-
toms did not reliably predict the patient-level probability of cure and antibiotic effect in this IPD-MA. Therefore, these 
characteristics cannot be expected to reliably distinguish those that do and do not benefit from antibiotics in adults 
presenting to primary care with ARS.

Keywords  Individual participant data meta-analysis, Randomized controlled trial, Acute rhinosinusitis, Antibiotic 
treatment, Individualized treatment effect, Prediction

*Correspondence:
Jeroen Hoogland
j.hoogland@amsterdamumc.nl
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41512-023-00154-0&domain=pdf
http://orcid.org/0000-0002-2397-6052


Page 2 of 11Hoogland et al. Diagnostic and Prognostic Research            (2023) 7:16 

Background
Acute rhinosinusitis (ARS) is one of the conditions with 
highest antibiotic over-prescription rates in adults [1, 2]. 
With antimicrobial resistance posing a serious threat to 
global public health [3], continuous efforts are needed to 
reduce inappropriate antibiotic prescription in primary 
care [4]. One of the reasons for the persistent habit of 
general practitioners (GPs) to prescribe antibiotics might 
be attributed to their clinical impression that there is a 
subgroup of patients with clinically diagnosed ARS that 
actually do benefit from antibiotics [5]. There is also 
some evidence to substantiate this impression; antibiot-
ics seem to have larger effects in those with radiologically 
confirmed ARS, in particular those with a fluid level or 
total opacification in any sinus on computed tomography 
[6]. Previous attempts to identify these subgroups based 
on common signs and symptoms were not successful, 
including an individual patient data meta-analysis (IPD-
MA) of randomized controlled trials (RCTs) comparing 
antibiotics with placebo in adults with clinically diag-
nosed ARS [7]. This preceding IPD-MA applied conven-
tional (univariable) subgroup analysis in which potential 
effect modification of single signs and symptoms was 
assessed one at the time. This approach does not focus 
on the absolute risk scale that is of most interest for clini-
cal decision making (instead focusing on relative effects), 
likely under-represents underlying clinical heteroge-
neity (individuals may vary in more than one relevant 
aspect) [8, 9], and is known to be statistically inefficient 
[10]. Multivariable risk prediction modelling allowing for 
simultaneous analysis of multiple baseline variables that 
may influence treatment effect has the potential to over-
come these problems [9, 11–14]. Such a model provides 
patient-level outcome risk predictions for both treat-
ment assignments and hence also predicts the patient-
level absolute benefit of antibiotic treatment of interest. 
Due to the required sample size, IPD from multiple stud-
ies provide a good source for model development [15, 
16]. Subsequently if accurate predictions can be made, 
they can inform treatment decisions in clinical practice, 
informing on the probability of fast spontaneous resolu-
tion of symptoms and the anticipated benefit of antibiotic 
treatment at the patient-level. With this aim, we applied 
multivariable prediction modelling methods to IPD of 
multiple RCTs comparing antibiotics with placebo in 
adults with clinically diagnosed ARS.

Methods
The protocol of this IPD-MA has been registered in 
PROSPERO (registration number CRD 42020220108) 
and published [17]. A detailed description of the ration-
ale and methodology can be found in the protocol pub-
lication [17]. We followed recommendations provided in 

the Predictive Approaches to Treatment effect Heteroge-
neity (PATH) statement [12], guidance on the individu-
alized treatment effect prediction [14], and guidance on 
the use of IPD-MA of diagnostic and prognostic model-
ling studies [16], and reported according to the TRIPOD 
[18, 19] and PRISMA-IPD statement [20].

Study identification and selection
We conducted a systematic search to identify eligible 
studies. First, the reference list of the 2018 Cochrane 
review on antibiotics for ARS in adults [6] was reviewed 
for any relevant studies published since the 2008 IPD-
MA [7]. Next, we updated the systematic electronic 
searches of the Cochrane review (online supplementary 
Table S1) from January 18, 2018 (date of last search), to 
September 1, 2020, to increase the yield of potentially rel-
evant trials. No language restrictions were applied.

Titles and abstracts of the unique records retrieved 
from these electronic databases were screened and the 
full text of all potentially eligible articles was reviewed 
against the following predefined criteria: (i) RCT com-
paring antibiotics with placebo and (ii) enrolled adults 
( ≥ 16 years) presenting to primary care with uncompli-
cated ARS based on clinical signs and symptoms. Studies 
involving children (<16 year), referred patients, hospital-
ized patients, and those involving highly specialized pop-
ulations (e.g. those with immunodeficiency, odontogenic 
sinusitis, or malignancy) were excluded. In addition, ref-
erence lists of all eligible studies as well as those from rel-
evant systematic reviews were screened for any further 
potential studies and contributing review authors were 
asked if they knew any additional (published or unpub-
lished) studies. Study authors of eligible trials were con-
tacted and invited to provide the de-identified, complete 
dataset of their original trial.

Quality assessment of included studies
Methodological quality of the included studies was 
assessed using the Cochrane Risk of Bias 2 tool [21]. 
If information regarding study quality was unclear or 
undisclosed, individual trial authors were contacted to 
provide further clarification.

Outcome assessment
All retrieved IPD were assembled in a single dataset. The 
predefined outcome of interest was cure at 8–15 days 
(yes vs no) [17], which was available in all studies.

Candidate predictors
Candidate predictors were selected based on clinical rea-
soning, knowledge from existing literature, and availabil-
ity in the IPD set. Next to (i) treatment assignment (oral 
antibiotics vs placebo) which was available in all trials, 
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the following pre-specified candidate predictors of treat-
ment effect were available in at least 50% of studies: (ii) 
sex, (iii) age (in years), (iv) preceding upper respiratory 
tract infection (URTI), (v) symptom duration prior to 
enrolment (in days), (vi) pain on bending, (vii) teeth pain, 
(viii) unilateral facial pain, (ix) self-reported purulent 
nasal discharge (PNDsr), (x) symptom severity, (xi) pres-
ence of fever ( > 37.5 C; yes vs no), (xii) purulent nasal 
discharge upon examination (PNDex), and (xiii) puru-
lent pharyngeal discharge upon examination (PPDex). 
For symptom severity, we used the standardized 0–100 
severity as used in the 2008 IPD-MA [7] which was based 
on a (scaled) logistic transformation of the severity meas-
ures applied in the individual trials. The following pre-
specified candidate predictors [17] could not be included 
in our analysis due to not being measured in > 50 % of tri-
als: previous ARS, anosmia, cacosmia, double sickening, 
overall clinical impression, C-reactive protein (CRP), and 
erythrocyte sedimentation rate (ESR) values. The avail-
able set of candidate predictors was assessed for both 
prognostic value and for differential treatment effect with 
respect to cure at 8–15 days; see the ‘Statistical analysis’ 
section for further details.

Sample size considerations
We calculated the maximum number of candidate 
predictors based on an anticipated number of 2500 
patients in the IPD set, with an average outcome preva-
lence of 60% cure, and a desired 0.05 accuracy in terms 
of mean absolute prediction error [22]. Since the avail-
able guidance does not yet extend to clustered IPD, we 
conservatively estimated our effective sample size to be 
1250 which allows for evaluation of 25 parameters in the 
model based on a presumed Cox-Snell R2 of 0.175, which 
is also expected to keep shrinkage below 10% and the 
expected Cox-Snell R2 within 5%.

Statistical analysis
Handling of missing data
Missing data were imputed using a fully Bayesian joint 
modelling approach [23]. A total of 50 imputations were 
derived as compatible with a generalized linear mixed 
effects analysis model with a logistic link function, ran-
dom intercepts per study, main effects for treatment and 
each of the candidate predictors, and treatment-predic-
tor interaction terms [24]. All effect were modelled to 
be linear on the linear predictor scale since spline-based 
exploratory analysis based on the complete cases did not 
indicate clear non-linear predictor-outcome relations.

Descriptive statistics
First, predictors and outcome distributions were sum-
marized in each study. Next, a multinomial membership 

model was used to evaluate multivariable between-study 
heterogeneity in predictor and outcome distributions 
[25]. Such a membership model predicts study member-
ship based on the candidate predictors and outcome and 
hence illustrates the degree to which multivariable differ-
ences between studies allow a model to predict to which 
study an individual belongs. Details are provided in the 
online supplementary material 1.

Main analysis: prediction model development
In the primary analysis, all available candidate predic-
tors and treatment assignment were included as main 
effects in a logistic mixed effects regression model with 
random intercepts per study [17]. The requirement for a 
random main treatment effect was also evaluated. Symp-
tom duration was heavily skewed to the right and there-
fore log-transformed. Due to between-study variability 
in outcome assessment, study level variables  ‘number of 
days between baseline and outcome measurement’ and 
‘type of outcome measurement’ were added to the model. 
To explore treatment effect heterogeneity, all treatment-
predictor interactions were added to the model. In line 
with the study protocol [17], this extended model was 
compared to the main-effects-only model by means of 
a likelihood ratio test (based on the D3-statistic [24]), 
hence testing the joint contribution of all treatment-
predictor interactions against the null hypothesis that 
all interaction parameters are zero. The main purpose 
was to avoid extensive data-driven search of interactions 
in the main analysis and select either all or none of the 
treatment-predictor interactions.

In mathematical notation, the complete model for the 
Bernoulli distributed outcome cure, for individual i from 
the study j, can be written as

where β0 denotes the overall intercept, β1 the main treat-
ment effect, βmain the vector of main effect coefficients 
for each of the candidate predictors in xi , γ int the vec-
tor of corresponding treatment-predictor interactions, 
and b0 and b1 denote the random intercepts and treat-
ment effects. Hence, the pre-defined likelihood ratio test 
for the combined treatment-predictor interactions tests 
against the null hypothesis that γ int = 0 . In addition to 
this global test, the exploratory analysis described in the 
next section did search for individual interactions. Note 
that in the absence of treatment-predictor interactions 

Curei ∼Bernoulli(probCure=1 = P)

log
P̂

1− P̂
=(β0 + b0j)+ (β1 + b1j)Treat1i + β ′

mainxi + γ ′
intxiTreat1i

b0j

b1j
∼N

0

0

,
σ 2
b0j

ρb0j b1j

ρb1j b0j σ 2
b1j

, for Trial j = 1, . . . ,J
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(also known as predictive effects [26]), the model reduces 
to a prognostic model [27] with the addition of a main 
treatment effect β1 that may vary across studies according 
to b1.

Secondary and exploratory analyses
As opposed to the study of individual treatment inter-
actions, baseline risk-modelling [12] was pre-specified 
as a secondary analysis [17]. This approach entails an 
evaluation of possible treatment effect heterogeneity as 
a function of baseline risk-model and has been recom-
mended in settings where (i) an overall treatment effect 
is well established, (ii) several large RCTs are available 
for analysis, and (iii) when substantial identifiable het-
erogeneity of outcome risk in the trial population(s) is 
anticipated [12]. In addition, in order to evaluate the 
possible benefit of model simplification in terms of 
generalizability, model reduction was evaluated using a 
relaxed-lasso procedure in exploratory analysis [28, 29]. 
The relaxed-lasso was performed on stacked imputed 
data [30], with fixed and unpenalized study intercepts, 
an unpenalized main treatment effect, and penalized 
main effects for all candidate predictors, and penalized 
interactions between all candidate predictors and treat-
ment. Tuning parameters lambda (degree of penaliza-
tion selection) and gamma (degree of post-selection 
relaxation) selected according to the 1 standard error 
rule based on 10-fold cross-validation.

Evaluation of prediction model performance
Prediction model performance with respect to the pre-
diction of outcome risk and absolute antibiotic treat-
ment effect was evaluated by means of calibration 
performance (extent of agreement between predicted 
risk and observed events), discrimination performance 
(with the aim to quantify whether predicted risk cor-
rectly rank-orders actual risk), Nagelkerke R2 (as a meas-
ure of overall model fit), and Brier score (as a measure 
of prediction accuracy). Performance was assessed using 
internal-external cross-validation (IECV) [31]. Standard 
errors for each of the measures were derived based on 
500 bootstrap samples. Meta-analysis was used to sum-
marize the main IECV results using restricted maximum 
likelihood-based estimates of between study variability, 
inverse variance weighting, and Hartung and Knapp 
adjustment [32]. Prediction model performance with 
respect to predicted absolute antibiotic treatment effect 
(i.e. on the risk difference level) was evaluated in terms 
of discriminative performance using the c-for-benefit 
[33] and in terms of calibration in the form of predicted 
versus observed treatment effect in quartiles of pre-
dicted treatment effect.

Results
Study inclusion and study characteristics
The 2008 IPD-MA [7] included data from 9 trials [34–
42]. An additional eligible study [43] was identified from 
reviewing the reference list of the 2018 Cochrane review 
[6]. This study with 166 participants (online supplemen-
tary Table S2) was excluded since authors were not able 
to provide IPD. No further eligible studies were found 
after screening the 303 unique records retrieved from the 
electronic database searches or through additional routes 
(Fig. 1). This left 9 trials with 2539 participants aged ( ≥ 16 
years) for inclusion [34–42]. Details on the design char-
acteristics of the included studies are shown in online 
supplementary Table S3. All studies were double-blind, 
placebo controlled randomized trials and conducted 
in high-income countries in Europe and in the US. One 
trial used a 2×2 factorial design [41], and data were split 
into two sub-trials: antibiotics vs. placebo without con-
comitant nasal steroids in both groups (Williamson1) or 
antibiotics vs. placebo with concomitant nasal steroids in 
both groups (Williamson2). Participants from the inter-
vention groups received beta-lactam antibiotics (mainly 
amoxicillin, but also amoxicillin clavulanate or phenoxy-
methylpenicillin), macrolides (azithromycin), or tetra-
cyclines (doxycycline). Sample size of the included trials 
ranged from 135 to 503.

Quality assessment of included studies
The quality assessment of included studies is summarized 
in online supplementary Fig. S1. The risk of bias could 
not be assessed for the unpublished Schering-Plough 
trial [42]. Overall risk of bias was judged low for the other 
included studies.

Missing data
The percentage of missing data varied greatly across 
studies and variables (online supplementary Table S4). 
Including both sporadic (i.e. partly, but not completely 
missing in a certain study) and systematically missing 
data (i.e. completely missing in a certain study), the per-
centage of missingness was below 10% for all variables 
except for preceding URTI (66%, unavailable in 5/10 
studies) pain on bending (62%, unavailable in 5/10 trials), 
pain in teeth (56%, unavailable in 4/10 trials), unilateral 
facial pain (41%, unavailable in 2/10 trials), and PPDex 
(52%, unavailable in 5/10 trials).

Descriptive statistics
Descriptive statistics for each of the trials after imputa-
tion of missing data are shown in Table 1 and visually 
presented in online supplementary Fig. S2. Studies dif-
fered with respect to both outcome occurrence (range 
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35–77%) and the prevalence of predictors of interest. 
Most notably, symptom duration prior to enrolment 
and the prevalence of pain on bending, PNDsr, and 
PPDex varied substantially across studies.

Online supplementary Table S5 further illustrates the 
between-study heterogeneity. The membership model 
had high discriminative ability for all studies, indicating 
substantial differences in predictor and outcome distri-
butions across studies. Based on a common intercept and 
common predictor-outcome associations, the observed 
outcome incidence deviated somewhat from the expec-
tation for four trials (Merenstein et al. [40], Kaiser et al. 
[35], de Sutter et al. [36], and Varonen et al. [38]), indi-
cating that the observed incidence of cure could not be 
completely explained by the modelled effects of case-mix 
differences (online supplementary Fig. S3).

Main analysis results
Estimates for the pre-specified main effects model are 
shown in Table 2. The pre-defined pooled likelihood ratio 
test of the combined treatment-predictor interactions 
was non-significant and they were not included in the 
model (D3 statistic 0.54, df1 12, df2 7497, p = 0.89). Sig-
nificant patient-level associations with the risk of cure 
were found for antibiotic treatment (OR 1.34 [1.13 to 
1.59]), age (OR 0.91 per 10 years [0.85 to 0.97]), log symp-
tom duration prior to enrolment (OR 0.76 [0.65 to 0.89]), 
and symptom severity (OR 0.87 [0.82 to 0.91]). A signifi-
cant study-level association with the risk of cure was 
found for outcome assessment based on clinical exami-
nation or a combination of methods vs. symptom 
diary (OR 0.40 [0.19 to 0.84]). Despite these main effect 
estimates, there was still considerable unexplained 

Fig. 1  Inclusion flowchart. * refers to Young et al. [7], ** refers to Lemiengre et al. [6], and *** refers to Garbutt et al. [43]
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between-study variability in the outcome as shown in the 
random intercepts estimates (online supplementary Fig. 
S4). The estimated standard deviation of the random 
intercept distribution was 0.33, which has been referred 
to as ‘reasonable heterogeneity’ (Spiegelhalter et al. Sec-
tion  5.7 [44]). The largest deviations from the overall 
mean were estimated for study data from Merenstein 
(−0.45), de Sutter (−0.44), Kaiser (0.44), and Varonen 
(0.48), corresponding to mean changes in modelled indi-
vidual risks (i.e. the difference between modelled risk 
with the estimated random intercepts and with the ran-
dom intercepts set to zero) of −10.5%, −10.1%, +10.6%, 
and +9.8%. The addition of a random main treatment 
effect to the model resulted in near-zero estimated varia-
bility ( ̂σ 2

b1j
 = 0.001) with unidentifiable correlation 

between intercept and treatment effect variability; hence, 
the random treatment effect was dropped.

IECV performance estimates indicated poor prediction 
performance and overall model fit of the main effects 
model (Table  3 and online supplementary Fig. S5). The 
pooled IECV c-statistic estimate (0.58) did indicate some 
discriminative ability with a prediction interval (PI) of 
0.56–0.62. However, while R2 and Brier scores were het-
erogeneous across studies, their pooled estimates clearly 
indicate poor performance with R2 −0.08 (PI −0.48, 0.32) 
and Brier score 0.24 (PI 0.15, 0.34). It is worth noting 

that, in contrast to the c-statistic, both R2 and Brier score 
depend on accurate intercept estimates and will therefore 
reflect the unexplained between-study variability asso-
ciated with the random intercepts. Both measures indi-
cate that the main effects model did not provide accurate 
absolute risk predictions for the hold-out studies. This 
lack of generalizability between studies was further illus-
trated by the large prediction intervals for the estimated 
calibration intercepts [−1.06 and 1.11] and calibration 

Table 2  Main effect estimates of prognostic factors for cure, based on the random intercept model as derived from IPD of ten trials. 
Coefficients (log(OR)), standard errors, odds ratios (OR), and 95% confidence intervals (CI) were pooled across imputations. The mean 
standard deviation of the random intercepts was 0.33

PNDex Purulent nasal discharge upon examination, PNDsr Purulent nasal discharge self-reported, PPDex Purulent pharyngeal discharge upon examination, URTI Upper 
respiratory tract infection
a Per point on the inverse logit transformation of (severity score / 100)

β̂ se 95% CI OR (95% CI)

Intercept 0.83 0.88 (−0.89, 2.56) 2.30 (0.41, 12.98)

Antibiotics (yes) 0.29 0.09 (0.12, 0.46) 1.34 (1.13, 1.59)

Sex, female −0.09 0.09 (−0.27, 0.09) 0.92 (0.76, 1.10)

Age, per 10 years −0.10 0.03 (−0.16, −0.03) 0.91 (0.85, 0.97)

Preceding URTI 0.23 0.19 (−0.15, 0.61) 1.26 (0.86, 1.84)

Symptom duration in log(days) −0.27 0.08 (−0.42, −0.12) 0.76 (0.65, 0.89)

Pain on bending 0.12 0.18 (−0.23, 0.47) 1.13(0.80, 1.60)

Pain in teeth −0.12 0.15 (−0.42, 0.18) 0.89 (0.66, 1.20)

Unilateral facial pain 0.14 0.13 (−0.11, 0.40) 1.15 (0.89, 1.49)

PNDsr 0.17 0.11 (−0.05, 0.39) 1.19 (0.95, 1.48)

Symptom severitya −0.14 0.03 (−0.20, −0.09) 0.87 (0.82, 0.91)

Fever −0.25 0.19 (−0.63, 0.13) 0.78 (0.53, 1.14)

PNDex 0.07 0.10 (−0.12, 0.26) 1.07 (0.89, 1.29)

PPDex −0.19 0.15 (−0.48, 0.10) 0.82 (0.62, 1.10)

Time to outcome measurement (days) 0.03 0.08 (−0.12, 0.18) 1.03 (0.89, 1.20)

Outcome type: other, (ref. diary) −0.92 0.38 (−1.66, −0.18) 0.40 (0.19, 0.84)

Outcome type: telephone, (ref. diary) −0.13 0.37 (−0.85, 0.59) 0.88 (0.43, 1.81)

Table 3  IECV results for risk (of cure) prediction based on the 
main effects model as derived from IPD of ten trials

IECV Internal-external cross-validation

C-statistic R2 Brier Intercept Slope

Bucher 0.59 0.02 0.21 0.08 0.79

De Sutter 0.55 −0.49 0.30 −0.82 0.38

Kaiser 0.55 −0.60 0.33 0.61 0.38

Meltzer 0.62 0.03 0.21 0.00 1.57

Merenstein 0.57 −0.26 0.29 −0.51 0.57

Schering-Plough 0.58 0.02 0.22 0.15 0.88

Stalman 0.59 0.04 0.22 −0.04 0.92

Varonen 0.62 −0.27 0.21 0.94 1.09

Williamson1 0.60 0.01 0.23 0.09 0.67

Williamson2 0.62 0.04 0.22 −0.10 1.04
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slopes [0.18 and 1.38]. While these intervals include the 
favourable values of 0 and 1, they also include a large 
range of unfavourable calibration estimates.

As a sensitivity analysis, all analyses were re-run after 
omitting data from the Schering-Plough study [42], as the 
risk of bias could not be assessed for this trial. This, how-
ever, did not substantially change model performance 
(online supplementary Table S6). In summary, the abso-
lute risk of cure could not be reliably predicted based on 
the available predictors and can hence not be used to dif-
ferentiate between low-risk and high-risk individuals to 
inform treatment decisions.

Secondary and exploratory analyses results
Given the lack of reliable risk predictions based on the 
main risk model, further modelling using these predic-
tions as inputs was not deemed relevant. Therefore, base-
line risk-modelling, which essentially evaluates outcome 
risk modification by treatment, was not performed. As 
anticipated based on previous findings, the explora-
tory relaxed-lasso procedure led to substantial model 
reduction: only a main effect for symptom severity and 
unpenalized parameters (study intercepts and treatment 
assignment) were left in the model.

Contrary to the large between-study heterogeneity in 
terms of model performance as observed in the main 
analysis, evaluation of the marginal relative treatment 
effect (OR 1.32; 95% CI 1.11–1.56) did not reveal any 
between-study heterogeneity (not shown), confirming 
earlier results [7].

Evaluations of absolute treatment effect prediction
To supplement outcome risk evaluations, individual 
predictions of absolute treatment effect were evaluated 
(online supplementary Fig. S6). The IECV estimate for 
discriminative performance (c-for-benefit) was 0.50 for 
the main effects model, indicating absence of discrimina-
tive ability. Therefore, further examination of calibration 
performance was not deemed relevant.

Discussion
This large IPD-MA of high-quality antibiotic therapy tri-
als in adults presenting to primary care with clinically 
diagnosed uncomplicated ARS evaluated patient-level 
variability in prognosis and antibiotic treatment effect. 
Such variability could not be reliably predicted based on 
demographics and clinical signs and symptoms, illustrat-
ing that these characteristics do not contribute to the 
identification of patients that are most likely to benefit 
from antibiotics.

In more detail, meaningful discrimination between 
patients with respect to treatment effect could have been 
based on (i) important treatment-predictor interactions 

(i.e. genuine treatment effect heterogeneity) or (ii) a 
treatment effect with a constant odds ratio in combina-
tion with accurate and meaningful variability in progno-
sis [14]. The main results did identify several prognostic 
factors [27], with increasing age, symptom duration, and 
symptom severity decreasing the probability of cure at 
8–15 days. In line, the model had some discriminative 
ability with respect to prognosis (IECV-based c-statistic 
0.58), which reflects some degree of correct rank-order-
ing with respect to predicted risk. However, the remain-
ing degree of uncertainty was too large for these effects to 
translate into reliable absolute risk estimates as needed to 
guide patient management.

A strong aspect of this study was the large sample size 
derived from multiple high-quality trials. This allowed for 
careful handling of missing data and consistent multivar-
iable prediction modelling of antibiotic treatment effect 
across studies [16]. The lack of predictable between-sub-
ject heterogeneity of antibiotic benefit was robust, since 
our conservative primary analysis’ findings were sup-
ported by those derived from exploratory relaxed-lasso 
modelling.

Several limitations deserve further attention. First, we 
observed a high degree of heterogeneity across stud-
ies, in particular with respect to the outcome definition, 
outcome assessment, and studied populations. In terms 
of outcome definition and assessment, this was alleviated 
by adjustment for study level information on time to out-
come assessment and type of outcome assessment. With 
respect to heterogeneity in study populations, internal-
external cross-validation revealed that a common model 
did not describe the data well. Second, we did not have 
sufficient information to include time-to-cure instead of 
the available dichotomous outcome data, which would 
likely be a more sensitive outcome. Also, severely unwell 
individuals with prolonged illness duration may be 
underrepresented in the included trials, and the mod-
elled relationships between predictors and outcome may 
not generalize to the wider population presenting in pri-
mary care. Third, there was a substantial amount of sys-
temically missing data. Although carefully handled using 
multiple imputation, this still represents loss of informa-
tion which likely has influenced our results (e.g. possi-
bly weakening predictor-outcome associations). Finally, 
potential important signs (severe pain, double sickening) 
and laboratory findings (CRP, ESR) were not available 
in a sufficient number of trials. It is, however, uncertain 
whether the availability of these variables would have 
impacted our findings. For example, CRP was found 
to be of value in a recent diagnostic IPD-MA for ruling 
out, but not for ruling in target conditions associated 
with antibiotic benefit in adults suspected of ARS [45]. A 
recent review of diagnostic accuracy studies of CRP, ESR, 
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white blood cell counts, procalcitonin, and nasal nitric 
oxide for detecting acute bacterial rhinosinusitis (ABRS) 
found that especially elevated CRP and ESR are associ-
ated with higher probability of ABRS. However, CRP and 
ESR were still found insufficiently accurate for predict-
ing ABRS [46]. Further research in this field should focus 
on the added value of novel point-of-care tests or novel 
devices such as those aimed at gaining specimens from 
draining sinuses [47] over readily available signs and 
symptoms such as age, symptom duration, and severity. 
Early-stage investigations of biomarker combination tests 
as well as host gene expression diagnostics suggest that 
these point-of-care tests have the potential to discrimi-
nate between viral and bacterial aetiology of RTI, but 
high-quality prospective clinical validation studies in pri-
mary care are needed to confirm their potential [48–50].

Lastly, some discussion with respect to the choice of 
modeling is warranted. In principle, all model param-
eters could vary across studies, but the limited number 
of studies did not provide sufficient information to thor-
oughly estimate such variability. Therefore, in line with 
Seo et  al. [51], we assumed the main predictor effects 
and treatment-predictor interactions to be common 
across studies (fixed). On the contrary, when interest is 
primarily in a small number of parameters relating to 
relative treatment effect (hence treating other parameters 
as nuisance parameters), other approaches are available 
[52]. Similar arguments hold for the analysis of isolated 
prognostic factors [53]. In our case, all model parameters 
were of interest, with the fixed effects revealing com-
mon patterns across studies. These common patterns are 
exactly the patterns of interest for generalizable predic-
tion accuracy, but do not provide a detailed description 
of (unexplained) between-study variability.

In conclusion, this IPD-MA using demographics and 
signs and symptoms did not result in reliable patient-
level predictions of either prognosis or antibiotic treat-
ment effect in adults presenting to primary care with 
clinically diagnosed ARS. While future research may 
reveal markers that aid the identification of adults with 
clinically diagnosed ARS most likely to benefit from anti-
biotics, current evidence does not support individualized 
treatment selection in adults with uncomplicated ARS.
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