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Abstract 

Background: Prognostic models are used widely in the oncology domain to guide medical decision-making. Little is 
known about the risk of bias of prognostic models developed using machine learning and the barriers to their clinical 
uptake in the oncology domain.

Methods: We conducted a systematic review and searched MEDLINE and EMBASE databases for oncology-related 
studies developing a prognostic model using machine learning methods published between 01/01/2019 and 
05/09/2019. The primary outcome was risk of bias, judged using the Prediction model Risk Of Bias ASsessment Tool 
(PROBAST). We described risk of bias overall and for each domain, by development and validation analyses separately.

Results: We included 62 publications (48 development-only; 14 development with validation). 152 models were 
developed across all publications and 37 models were validated. 84% (95% CI: 77 to 89) of developed models and 
51% (95% CI: 35 to 67) of validated models were at overall high risk of bias. Bias introduced in the analysis was the 
largest contributor to the overall risk of bias judgement for model development and validation. 123 (81%, 95% CI: 
73.8 to 86.4) developed models and 19 (51%, 95% CI: 35.1 to 67.3) validated models were at high risk of bias due to 
their analysis, mostly due to shortcomings in the analysis including insufficient sample size and split-sample internal 
validation.

Conclusions: The quality of machine learning based prognostic models in the oncology domain is poor and 
most models have a high risk of bias, contraindicating their use in clinical practice. Adherence to better standards 
is urgently needed, with a focus on sample size estimation and analysis methods, to improve the quality of these 
models.
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Background
Clinical prediction models use multiple variables (pre-
dictors) in combination (such as demographics, clinical 
information, test results and biomarker values), to esti-
mate the risk of existing (diagnostic) or future (prognos-
tic) patient health outcomes. Many medical decisions 
across all specialties are informed by prediction models 
[1–7]. In particular, in oncology prediction models are 
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used to assess an individual’s risk of developing cancer, 
help cancer diagnosis, assess cancer prognosis and guide 
treatment [8–13]. However, compared to the number of 
prediction models that are developed in oncology, very 
few are used in daily practice and many models con-
tribute to research waste [14–17]. This problem might 
be further exacerbated with the rapidly growing use of 
machine learning methods, which refers to a broad set 
of computational (artificial intelligence, AI) approaches 
including neural networks and random forests.

Machine learning is often portrayed as offering many 
advantages (over traditional statistical modelling) for 
developing prediction models, including offering more 
flexible modelling, ability to analyse ‘big’, non-linear, and 
high dimensional data, and modelling complex clinical 
scenarios. However, these advantages have not yet mate-
rialised into patient benefit as most models are not yet 
being used in clinical practice [18–23]. Given the increas-
ing concern about the methodological quality and risk 
of bias of prediction model studies, caution is warranted 
and the lack of uptake of models in medical practice is 
not surprising [18, 21, 22, 24].

Though there is much evidence about the risk of bias of 
prediction models developed using traditional statistical 
modelling methods, there is a dearth of research evaluat-
ing machine learning methods. The aim of this study was 
to evaluate the risk of bias of prognostic prediction mod-
els developed using machine learning (as defined by the 
authors of the primary studies) in the field of Oncology.

Methods
We conducted a review of prognostic (future outcome) 
risk prediction modelling studies within the oncology 
domain that use machine learning methods (as defined 
by the authors of the primary studies).

Protocol registration and reporting standards
This study was registered with PROSPERO (ID: 
CRD42019140361) and reported using the Preferred 
Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) guideline [25, 26].

Information sources
We searched the MEDLINE (via OVID) and Embase 
(via OVID) medical literature databases for prognostic 
prediction modelling studies developed using machine 
learning methods within the oncology field and pub-
lished between 1 Jan 2019 to 5 September 2019 (the date 
that the search was conducted).

The full search strategies for both databases are pro-
vided in Supplementary tables 1 and 2. The search terms 
included relevant Mesh and EMTREE headings and free-
text terms. We searched in the title, abstract or keyword 

fields, for general modelling terms (such as “machine 
learning” and “deep learning”), more specific machine 
learning modelling terms (such as “random forest”, “sup-
port vector machine” and “neural networks”), cancer 
terms (such as “cancer”, “malignant” and “carcinoma”), 
prediction-related search terms (such as “prediction”, 
“prognostic” and “risk of”) and specific model perfor-
mance terms (such as “discrimination” and “calibration”). 
Modelling, cancer, and prediction terms were combined 
with ‘and’ to retrieve publications meeting all three sets 
of search criteria. The search was limited to retrieve stud-
ies published in 2019 only to ensure that a contemporary 
sample of studies were assessed in the review. Apart from 
the date range specified no other limits were applied to 
the search. An information specialist (SK) was involved 
in the development of the search strategy for both 
databases.

Eligibility criteria
Published studies developing a prognostic model using 
machine learning methods, as defined by authors of the 
primary report, within the oncology field in 2019 were 
included.

The boundary between machine learning and statisti-
cal (regression-based) methods for prediction is unclear 
and often cultural rather than based on specific methods 
[27]. Whilst some methods, such as neural networks typ-
ically fall into machine learning taxonomy, other meth-
ods such as logistic regression are frequently ascribed to 
both domains. We therefore included studies developing 
a prognostic model if the modelling method was defined 
as machine learning by the authors of the primary report. 
For example, studies using logistic regression were 
included if they were explicitly described as machine 
learning by the primary study authors anywhere in the 
primary report, else it was excluded. Publications also 
had to fulfil the following inclusion and exclusion criteria:

Inclusion Criteria

• Development of a prediction model for individual-
ised prognosis using machine learning methods, as 
defined by authors of the primary report:

1. in the oncology domain
2. for any health-related outcome
3. for any outcome measurement (e.g., continuous, 

binary, ordinal, multinomial, time-to-event)
4. using at least two or more predictors (prognostic 

factors)
5. using any study design
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experimental studies (including randomised trials)
observational studies (including prospective studies, 
retrospective studies, cohort studies, case-control 
studies)

• English language studies

Exclusion Criteria

• Studies that only evaluated the performance of an 
existing prediction model (e.g., an external validation 
study)

• Imaging studies, or studies using imaging parameters 
as candidate predictors in the model

• Speech recognition/voice pattern studies, or studies 
using speech parameters as candidate predictors

• Lab-based studies

Genetic studies, or studies using genetic risk factors 
as candidate predictors
Molecular studies, or studies using molecular mark-
ers as candidate predictors

• Risk or prognostic factor studies, primarily interested 
in the association of risk factors with the outcome

• Secondary research (e.g., reviews of prediction mod-
els)

• Conference abstracts

Study selection, data extraction and data management
Publications from MEDLINE and Embase were imported 
into Endnote reference software where they were de-
duplicated and then imported into Rayyan web applica-
tion where they were screened [28, 29].

Two independent researchers (PD, JM) screened 
the titles and abstracts of the identified publications. 
Two independent researchers, from a combination of 
five reviewers (PD, JM, GB, BS, CLAN) reviewed the 
full text for potentially eligible publications and per-
formed a double data extraction of eligible publications. 
One researcher screened all publications (PD) and four 
researchers collectively screened the same publications 
(JM, GB, BS, CLAN). Disagreements were discussed and 
adjudicated by a third reviewer (GSC), where necessary.

The primary outcome was risk of bias for each devel-
oped model and was assessed using the Prediction model 
Risk Of Bias ASsessment Tool (PROBAST) [30, 31]. 
PROBAST examines the extent to which a model’s risk 
predictions are likely to be accurate when applied in new 

individuals and depends on four domains (Table 1): par-
ticipants, predictors, outcomes and analysis. The data 
extraction form was developed using PROBAST, in com-
bination with the CHARMS checklist [32], and applied 
to each model based on information within the model 
development article (including any external validation 
if reported within the development article). The extrac-
tion form was piloted among all the five reviewers using 
five eligible publications. Results of the pilot were dis-
cussed, and data extraction items were clarified amongst 
all reviewers. Text for items in the PROBAST assessment 
were not changed, instead notes were added to each item 
for clarification and to ensure consistent data extrac-
tion. The data extraction form was implemented using 
Research Data Capture (REDCap) software [33].

Data items
Descriptive information was extracted on the over-
all publication, including cancer type, study type, data 
source/study design, target population, type of prediction 
outcome, number and type of machine learning models 
used, setting, intended use and aim of the clinical predic-
tion model. Items were extracted separately for the devel-
opment and, if done, for validation of the models.

Items for PROBAST assessment consists of 20 signal-
ling questions across the four domains for which details 
were extracted and further criteria of how the signalling 
questions were used to inform the risk of bias assessment 
can be found in Supplementary tables 3 and 4.

Summary measures and synthesis of results
Findings were summarised using descriptive statistics 
with logit-transformed 95% confidence intervals and 
visual plots, alongside a narrative synthesis. Analysis and 
synthesis of data was presented overall and by study type 
(i.e., studies only describing the development of a model 
and studies describing both the development and valida-
tion of a model).

Risk of bias was assessed separately for the develop-
ment and validation of each model. We assessed the risk 
of bias for the reported primary outcome. If the primary 
outcome was not explicitly specified, we took the first 
reported outcome in the results to be the primary out-
come. The risk of bias was assessed for each model using 
the study level information. If more than one model 
was developed and validated for the primary outcome, 
we assumed the risk of bias profile for the ‘participants’, 
‘predictors’ and ‘outcomes’ domains were the same for 
each model, unless additional information was reported 
for any specific model type. For the ‘analysis’ domain, 
we similarly assumed the same risk of bias profile across 
all models within a study if more than one model was 
developed and validated for signalling questions 4.1., 4.3. 
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Table 1 Study characteristics of the 62 included publications, by study type

* Other includes peritoneal carcinomatosis, incurable cancer (various), leukaemia, malignant peripheral nerve sheath tumour

All (n = 62) Development only 
(n = 48)

Development and 
external validation 
(n = 14)

n (%) n (%) n (%)

Study characteristics
Cancer type

  Lung 8 (12.9) 6 (12.5) 2 (14.3)

  Breast 6 (9.7) 6 (12.5) -

  Colon/colorectal/rectal 6 (9.7) 3 (6.3) 3 (21.4)

  Pancreatic 3 (4.8) 1 (2.1) 2 (14.3)

  Liver 2 (3.2) 2 (4.2) -

  Gastric 3 (4.7) 3 (6.3) -

  Head and neck 5 (8.1) 5 (10.4) -

  Spinal 4 (6.5) 4 (8.3) -

  Brain (inc. meningioma, glioblastoma) 5 (8.1) 4 (8.3) 1 (7.1)

  Oral (inc. nasopharyngeal carcinoma) 3 (4.8) 2 (4.2) 1 (7.1)

  Gynaecological (inc. cervical, ovarian, endometrial) 6 (9.7) 5 (10.4) 1 (7.1)

  Prostate/penile 5 (8.1) 4 (8.3) 1 (7.1)

  Skin (inc. melanoma) 2 (3.2) 1 (2.1) 1 (7.1)

  Other* 4 (6.5) 2 (4.2) 2 (14.3)

Target population
  Cancer patients 55 (88.7) 43 (89.6) 12 (85.7)

  General population 6 (9.7) 4 (8.3) 2 (14.3)

  Unclear 1 (1.6) 1 (2.1) -

Outcome
  Binary 48 (77.4) 40 (83.3) 8 (57.1)

  Complication 11 11 -

  Survival 8 7 1

  Recurrence 7 4 3

  Cancer occurrence 6 4 2

  Metastases 4 3 1

  Treatment response 4 4 -

  Mortality 3 2 1

  Resection 3 3 -

  Screening 1 1 -

  Progression 1 1 -

  Continuous 1 (1.6) - 1 (7.1)

  Length of stay 1 - 1

  Multinomial 2 (3.2) 2 (4.2) -

  Test result 1 1 -

  Treatment response 1 1 -

  Time to event 11 (17.7) 6 (12.5) 5 (35.7)

  Overall survival 7 3 4

  Cancer specific survival 1 - 1

  Cause specific mortality 1 1 -

  Disease specific survival 1 1 -

  Progression free survival 1 1 -
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and 4.4.-4.9. For signalling question 4.2. ‘Were continu-
ous and categorical predictors handled appropriately?’, 
we assumed these to be ‘Yes/Probably yes’ for flexible 
and ensemble machine learning models, unless other 
methods to handle continuous predictors were explic-
itly stated, as flexible and ensemble machine learning 
methods would implicitly handle continuous predictors 
non-linearly.

Signalling questions for each risk of bias domain were 
scored with ‘Yes/Probably Yes’ (‘Y/PY’), ‘No/Probably No’ 
(‘N/PN’) and ‘No information’. These scores were then 
combined to judge the risk of bias introduced by each 
domain. Analysis signalling questions 4.5. ‘Was selection 
of predictors based on univariable analysis avoided?’, 4.8. 
‘Were model overfitting and optimism in model perfor-
mance accounted for?’ and 4.9. ‘Do predictors and their 
assigned weights in the final model correspond to the 
results from the reported multivariable analysis?’ were 
not applicable to validation analyses. We calculated the 
number of signalling questions linked to a high risk of 
bias (answered ‘No/Probably No’ (‘N/PN’)) for each study 
and report the median number across all development 
and validation analyses.

All domains were considered ‘Low’ and ‘High’ risk of 
bias if all signalling questions were answered ‘Y/PY’ and 
‘N/PN’, respectively. If one or more of the signalling ques-
tions were answered ‘N/PN’, models could still be con-
sidered as ‘Low’ risk of bias and this was evaluated per 
study. ‘Unclear’ risk of bias was assigned if insufficient 
information was available for signalling questions and if 
no other question put the domain at high risk of bias.

The risk of bias introduced by each domain was used 
to judge the overall risk of bias for the development and, 
if done, the validation of each model. Overall low risk of 
bias was judged if all domains were considered low risk 
of bias, overall high risk of bias was judged if at least 1 
domain was considered high risk of bias, and overall 
unclear risk of bias was judged if at least one domain 
was considered unclear risk of bias and all other domains 
were low risk of bias. Each model was judged as ‘Low’, 
‘High’ and ‘Unclear’ risk of bias, which was compared 
between development-only and development with vali-
dation studies. We calculated the number of domains at 
high risk of bias for each study and report the median 
number across all development and validation analyses.

Applicability of included studies was not evaluated. All 
analyses were carried out in Stata v15 [34].

Results
2922 unique studies published between 1 January 2019 
and 5 September 2019 were retrieved from MEDLINE 
and Embase. Title and abstract screening excluded 
2729 publications and full text screening excluded a 

further 131 publication that did not meet the eligibility 
criteria. 62 publications were included in our review, of 
which 77% (n = 48) were development only studies and 
23% (n = 14) were development and external validation 
studies (Fig.  1). Citations for all included studies are 
provided in Supplementary table 5.

Study characteristics
The four most prevalent cancers for which mod-
els were developed for were lung (n = 8, 13%), breast 
(n = 6, 10%), colon (n = 6, 10%) and gynaecological 
cancer (n = 6, 8%). The main target population for the 
developed models were patients diagnosed with can-
cer (n = 55, 89%) and the most common outcomes to 
be predicted were complications of the cancer such as 
complications after surgery and clinical leakage (n = 11, 
18%) and survival as a binary outcome (n = 8, 13%), 
overall survival as a time-to-event outcome (n = 7, 11%) 
and cancer recurrence as a binary outcome (n = 7, 11%) 
(Table 1).

58% of studies developed models in the secondary care 
setting (36/62), 35% were developed using data from 
the USA (n = 22/62) and 21% were multicentre studies 
(13/62). More development with validation studies were 
multicentre studies (n = 6/14, 43%) compared to devel-
opment-only studies (n = 7/48, 15%). Developed models 
were primarily intended for use of healthcare provid-
ers (n = 40, 65%) but unclear in 31% of studies (n = 19) 
(Table 2).

Demographic information (n = 60, 97%) and tumour 
characteristics (n = 47, 76%) were included as candidate 
predictors (predictors for potential model inclusion) for 
most studies. 48% (n = 30) used personal history data, 
37% (n = 23) used physical measurements, 32% (n = 20) 
used blood and urine markers, 27% (n = 17) used treat-
ment characteristics, 16% (n = 10) used surgery charac-
teristics, 15% (n = 9) used patient clinical status and 3% 
(n = 2) used family history as candidate predictors in 
their models.

A total of 152 prognostic models were developed in the 
62 publications. 115 (76%) models were from develop-
ment-only studies and 37 (24%) were from development 
with external validation studies. A median of 2 prediction 
models were developed per publication [range: 1–6] over-
all and for each study type. Of the 152 developed models, 
42 (28%) were regression-based machine learning models 
(e.g., logistic regression, Cox regression), 71 (47%) were 
flexible machine learning models (e.g., neural networks, 
classification and regression trees) and 39 (26%) were 
ensemble machine learning models (e.g., random forests, 
gradient boosting machines). Full description of model 
characteristics is provided in Supplementary table 6.
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Risk of bias
Figure 2 summarises the risk of bias judgement for each 
domain and overall, for each model. 84% (n = 128/152; 
95% CI: 77 to 89) of the models that were developed were 
at overall high risk of bias, 5% (n = 7/152; 95% CI: 2 to 9) 
were at low risk of bias and risk of bias was unclear for 
11% (n = 17/152; 95% CI: 7 to 17) of developed models. 
51% (n = 19/37; 95% CI: 35 to 67) of models were at over-
all high risk of bias during external validation and for 46% 
(n = 17/37; 95% CI: 30 to 62) the risk of bias was unclear 
(due to the information needed to assess risk of bias not 
being reported or unclear). The validation of only one 
model was at low risk of bias.

A lower proportion of developed models were at high 
risk of bias in development with external validation stud-
ies (n = 28/37; 76%; 95% CI: 59 to 87), compared to devel-
opment-only studies (n = 100/115; 87%; 95% CI: 79 to 92). 
Overall risk of bias did not differ by model type; devel-
opment of 83% (n = 35/42; 95% CI: 69 to 92) of regres-
sion-based models, 85% (n = 60/71; 95% CI: 74 to 91) of 
flexible machine learning models and 85% (n = 33/39; 
95% CI: 70 to 93) of ensemble models were at high risk 

of bias. The risk of bias assessment by model type is pre-
sented in Supplementary table 7.

In total, information needed for 31% of all signal-
ling questions for risk of bias assessment across the 152 
developed models was absent. Information for all model 
development signalling questions was reported for one 
model. Sufficient information was reported for a median 
of 15 (IQR: 13, 16.5, range: 2 to 20) model development 
signalling questions. Similarly, information needed for 
33% of signalling questions for risk of bias assessment 
across the 37 validation analyses was absent. Information 
for all model validation signalling questions was reported 
for no models. Sufficient information was reported for a 
median of 13 (IQR: 10, 14, range: 2 to 16) model valida-
tion signalling questions.

A median of 4 signalling questions (IQR: 3, 5, range: 
0–10) were linked to a high risk of bias (answered ‘No/
Probably No’ (‘N/PN’)) in development analyses and a 
median of 1 domain was at high risk of bias (IQR: 1, 1, 
range 0–4). A median of 2 signalling questions (IQR: 1, 2, 
range: 1–3) were linked to a high risk of bias (answered 
‘No/Probably No’ (‘N/PN’)) in validation analyses and a 

Fig. 1 PRISMA flow diagram of included studies
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Table 2 Development analysis characteristics of the 62 included publications, by study type

* Validation characteristics for data source are: Randomised controlled trial: 2/14 (14.3%); Prospective cohort: 3/14 (21.4%); Retrospective cohort: 4/14 (28.6%); 
Registry: 2/14 (14.3%); Routine care database: 2/14 (14.3%); Other (survey): 1/14 (7.1%)
** Other includes audit, survey and a combination data source of hospital and research data and a registry
*** Validation characteristics for setting are: Secondary care: 7/14 (50%); Tertiary care: 4/14 (28.8%); General population: 2/14 (14.3%); Unclear: 1/14 (7.1%)
**** Other includes combination of hospitals, hospices and nursing homes, NTT medical center in Tokyo and combination of primary and tertiary care
***** Validation characteristics for multicentre are: No: 8/14 (57.1%); Yes: 3/14 (21.4%); Unclear: 3/14 (21.4%)
****** Validation characteristics for geographical location are: South America: 1/14 (7.1%); Asia: 5/14 (35.7%); USA: 5/14 (35.7%); Unclear: 3/14 (21.4%)

All (n = 62) Development only (n = 48) Development and 
external validation 
(n = 14)

n (%) n (%) n (%)

Development characteristics

Data source*

  Randomised controlled trial 1 (1.6) - 1 (7.1)

  Prospective cohort 9 (14.5) 9 (18.8) -

  Retrospective cohort 14 (22.6) 11 (22.9) 3 (21.4)

  Registry 21 (33.9) 15 (31.3) 6 (42.9)

  Routine care database 9 (14.5) 7 (14.6) 2 (14.3)

  Other** 3 (4.8) 2 (4.2) 1 (7.1)

  Unclear 5 (8.1) 4 (8.3) 1 (7.1)

Setting***

  Primary care 2 (3.2) 2 (4.2) -

  Secondary care 36 (58.1) 29 (60.4) 7 (50)

  Tertiary care 10 (16.1) 7 (14.6) 3 (21.4)

  General population 5 (8.1) 3 (6.3) 2 (14.3)

  Other**** 3 (4.8) 3 (6.3) -

  Unclear 6 (9.7) 4 (8.3) 2 (14.3)

Multicentre*****

  No 26 (41.9) 24 (50) 2 (14.3)

  Yes 13 (21) 7 (14.6) 6 (42.9)

  Unclear 23 (37.1) 17 (35.4) 6 (42.9)

Geographic location******

  South America 2 (3.2) 2 (4.2) -

  Asia 8 (12.9) 6 (12.5) 2 (14.3)

  Europe 13 (21) 13 (27.1) -

  Canada 3 (4.8) 3 (6.3) -

  USA 21 (33.9) 15 (31.3) 6 (42.9)

  Europe, North America, Australia 1 (1.6) 1 (2.1) -

  Europe, South America 1 (1.6) - 1 (7.1)

  South Asia, USA 1 (1.6) 1 (2.1) -

  Unclear 12 (19.4) 7 (14.6) 5 (35.7)

Intended user

  Health care providers 34 (54.8) 27 (56.3) 7 (50)

  Public/patients 2 (3.2) 2 (4.2) -

  Researchers 1 (1.6) 1 (2.1) -

  Health care providers and patient/public 4 (6.5) 1 (2.1) 3 (21.4)

  Health care providers and researchers 2 (3.2) 2 (4.2) -

  Unclear 19 (30.6) 15 (31.3) 4 (28.6)

  Aim of model

  Predict risk 36 (58.1) 25 (52.1) 11 (78.6)

  Classify patients 25 (40.3) 23 (47.9) 2 (14.3)

  Predict length of stay (continuous outcome) 1 (1.6) - 1 (7.1)
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median of 1 domain was at high risk of bias (IQR: 0, 1, 
range 0–3).

Participants domain
Risk of bias introduced by the participants domain was 
low for the development and validation analyses of 61% 
(n = 93/152; 95% CI: 53 to 69) and 51% (n = 19/37; 95% 
CI: 35 to 67) of models, respectively. Data sources (sig-
nalling question 1.1) were considered appropriate for 
76% (n = 115/152; 95% CI: 68 to 82) developed models 
and 81% (n = 30/37; 95% CI: 65 to 91) validated models 
(Table 3). Inclusion and exclusion of participants (signal-
ling question 1.2) was not reported or unclear in over a 
quarter of developed models (n = 39/152; 25%, 95% CI: 
19 to 33) and over a third of validated models (n = 13/37; 
35%, 95% CI: 21 to 52).

Predictors domain
Risk of bias introduced by the predictors domain was 
unclear for the development and validation of 46% 
(n = 70/152; 95% CI: 38 to 54) and 41% (n = 15/37; 
95% CI: 26 to 57) of models, respectively. The largest 
contributors to this unclear risk of bias were blinding 
of predictor assessments to the outcome (signalling 
question 2.2) and availability of predictors at the time 
of intended use (signalling question 2.3). Insufficient 
information about blinding of predictors was reported 
for development of 51% (78/152; 95% CI: 43 to 59) and 

validation of 46% (n = 17/37; 95% CI: 30 to 62) of mod-
els. The availability of predictors and timing of intended 
use was unclear or not reported for 40% of both model 
development (n = 61/152; 95% CI: 33 to 48) and valida-
tion (n = 15/37; 95% CI: 267 to 57).

Outcome domain
Risk of bias introduced by the outcome domain 
was low for the development and validation of 73% 
(n = 111/152; 95% CI: 65 to 80) and 62% (n = 23/37; 
95% CI: 45 to 77) of models, respectively. Objective 
outcome measures such as survival and mortality were 
used in 35% (n = 22/62) of studies. Over 75% of mod-
els were developed using an appropriately determined 
outcome (signalling question 3.1), pre-specified or 
standard outcome definition (signalling question 3.2), 
excluding predictor information (signalling question 
3.3) and were defined in a similar way for all partici-
pants (signalling question 3.4).

Similar to the predictor domain, unclear risk of bias 
was introduced because of no information reported 
about the blinding of the outcome (signalling question 
3.5) and the timing between predictor assessment and 
outcome determination (signalling question 3.6) for both 
development and validation analyses. For example, infor-
mation about timing between predictor assessment and 
outcome determination was lacking in 31% (n = 47/152; 

Fig. 2 Bar charts showing the risk of bias ratings for each domain and the overall judgement, for the development of 152 models (left) and external 
validation of 37 developed models (right). “Overall” indicates the overall risk of bias; “participants” indicates bias introduced by participants or data 
sources; “predictors” indicates bias introduced by predictors or their assessment; “outcome” indicates bias introduced by outcomes or their assessment; 
“analysis” indicates bias introduced by the analysis. Values in the bars are frequency (%). * values for risk of bias (development models - predictors) 
are 1(1). ** values for risk of bias (validation models - overall) are 1(3)
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Table 3 PROBAST signalling questions for model development and validation analyses in all 62 studies

PROBAST domain and 
signalling questions

Development analysis (152 models) Validation analysis (37 models)

Yes/probably yes No/probably no No information Yes/probably yes No/probably no No information

n (%; 95% CI) n (%; 95% CI) n (%; 95% CI) n (%; 95% CI) n (%; 95% CI) n (%; 95% CI)

1. PARTICIPANTS

  1.1. Were appropriate 
data sources used, e.g., 
cohort, randomized 
controlled trial, or 
nested case–control 
study data?

115 (75.7; 68.1,81.9) 19 (12.5; 8.1,18.8) 18 (11.8; 7.6,18.1) 30 (81.1; 64.7,90.9) 2 (5.4; 1.3,20) 5 (13.5; 5.6.29.3)

  1.2. Were all inclusions 
and exclusions of partici-
pants appropriate?

100 (65.8; 57.8,72.9) 13 (8.6; 5,14.2) 39 (25.7; 19.3,33.3) 24 (64.9; 47.9,78.8) - 13 (35.1; 21.2.52.1)

2. PREDICTORS

  2.1. Were predictors 
defined and assessed 
in a similar way for all 
participants?

117 (77; 69.6,83) 14 (9.2; 5.5,15) 21 (13.8; 9.2,20.3) 26 (70.3; 53.3,83.1) - 11 (29.7; 16.9.46.7)

  2.2. Were predictor 
assessments made 
without knowledge of 
outcome data?

73 (48; 40.1,56) 1 (0.7; 0.1,4.6) 78 (51.3; 43.3,59.2) 20 (54.1; 37.6,69.7) - 17 (46; 30.3.62.4)

  2.3. Are all predictors 
available at the time the 
model is intended to be 
used?

91 (59.9; 51.8,67.4) - 61 (40.1; 32.6,48.2) 22 (59.5; 42.7,74.3) - 15 (40.5; 25.7.57.3)

3. OUTCOMES

  3.1. Was the outcome 
determined appropri-
ately?

130 (85.5; 78.9,90.3) 4 (2.6; 1,6.9) 18 (11.8; 7.6,18.1) 30 (81.1; 64.7,90.9) - 7 (18.9; 9.1.35.3)

 3.2. Was a prespecified or 
standard outcome defini-
tion used?

122 (80.3; 73.1,85.9) 13 (8.6; 5,14.2) 17 (11.2; 7,17.3) 23 (62.2; 45.2,76.6) 7 (18.9; 9.1,35.3) 7 (18.9; 9.1.35.3)

  3.3. Were predictors 
excluded from the 
outcome definition?

117 (77; 69.6,83) 6 (4; 1.8,8.6) 29 (19.1; 13.6,26.2) 28 (75.7; 58.9,87.1) - 9 (24.3; 12.9.41.1)

  3.4. Was the outcome 
defined and determined 
in a similar way for all 
participants?

115 (75.7; 68.1,81.9) 11 (7.2; 4,12.6) 26 (17.1; 11.9,24) 35 (94.6; 80,98.7) - 2 (5.4; 1.3.20)

  3.5. Was the outcome 
determined without 
knowledge of predictor 
information?

106 (69.7; 61.9,76.6) 6 (4; 1.8,8.6) 40 (26.3; 19.9,33.9) 28 (75.7; 58.9,87.1) - 9 (24.3; 12.9.41.1)

  3.6. Was the time interval 
between predictor 
assessment and out-
come determination 
appropriate?

100 (65.8; 57.8,72.9) 5 (3.3; 1.4,7.7) 47 (30.9; 24,38.8) 21 (56.8; 40.1,72) 5 (13.5; 5.6,29.3) 11 (29.7; 16.9.46.7)

  4. ANALYSIS

  4.1. Were there a 
reasonable number of 
participants with the 
outcome?

44 (29; 22.2,36.7) 77 (50.7; 42.7,58.6) 31 (20.4; 14.7,27.6) 10 (27; 14.9,44) 16 (43.2; 28,59.9) 11 (29.7; 16.9,46.7)

  4.2. Were continuous 
and categorical predic-
tors handled appropri-
ately?

30 (19.7; 14.1,26.9) 57 (37.5; 30.1,45.5) 65 (42.8; 35.1,50.8) 19 (51.4; 35.1,67.3) 1 (2.7; 0.4,17.8) 17 (46; 30.3,62.4)
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95% CI: 24 to 39) and 30% (n = 11/37; 95% CI: 17 to 47) 
of models.

Analysis domain
Comprising 9 signalling questions, bias introduced in 
the analysis was the largest contributor to the over-
all risk of bias judgement for model development and 
validation. 81% (n = 123/152; 95% CI: 74 to 86) models 
were judged at high risk of bias in the analysis domain 
when developed, and 51% (n = 19/37; 95% CI: 35 to 67) 
models were at high risk on bias when validated.

Half of models had concerns of using an insufficient 
sample size because there were less than 10 events-per-
predictor (and no other justification for why overfitting 
would be minimised with the sample size) (n = 77/152; 
51%, 95% CI: 43 to 57) and no information (i.e., missing 
number of events or number of candidate predictors) 
was reported for a further 20% of models (n = 31/152; 
95% CI: 15 to 28). Of the 28 studies (n = 28/62, 45%) 
reporting both the number of outcome events and 
number of candidate predictors used for model 

development, a median of 9.4 events per predictor was 
used (IQR: 1.7, 21.3, range: 0.2 to 5836.5).

Handling missing data was considered inadequate for 
46% (n = 70/152; 95% CI: 38 to 54) of developed models 
and for a further 38% (n = 58/152; 95% CI: 31 to 46) of 
models, no information on either the presence or han-
dling of missing data was reported. Twenty-four stud-
ies (39%) reported methods to handle missing data and 
complete case analysis was the most common method 
(n = 10/24, 41%). Mean, median, or mode imputation 
was used in six studies (n = 6/24, 25%) and multiple 
imputation was used in five studies (n = 5/24, 21%). 
Two studies used subsequent follow-up data to com-
plete the missing data and another study used a k-near-
est neighbour algorithm.

Selection of predictors was informed by their univari-
able association with the outcome for 32% of models 
(n = 49/152), and thus signalling high risk of bias due 
to concerns of inappropriate selection. No information 
about methods to handle complexities of the data (e.g., 
censoring and competing risks) was reported for 75% 

Table 3 (continued)

PROBAST domain and 
signalling questions

Development analysis (152 models) Validation analysis (37 models)

Yes/probably yes No/probably no No information Yes/probably yes No/probably no No information

n (%; 95% CI) n (%; 95% CI) n (%; 95% CI) n (%; 95% CI) n (%; 95% CI) n (%; 95% CI)

  4.3. Were all enrolled 
participants included in 
the analysis?

43 (28.3; 21.7,36) 49 (32.2; 25.2,40.1) 60 (39.5; 32,47.5) 17 (46; 30.3,62.4) 9 (24.3; 12.9,41.1) 11 (29.7; 16.9,46.7)

  4.4. Were participants 
with missing data han-
dled appropriately?

24 (15.8; 10.8,22.5) 70 (46.1; 38.2,54.1) 58 (38.2; 30.7,46.2) 6 (16.2; 7.3,32.4) 15 (40.5; 25.7,57.3) 16 (43.2; 28,59.9)

  4.5. Was selection of 
predictors based on 
univariable analysis 
avoided?

68 (44.7; 37,52.8) 49 (32.2; 25.2,40.1) 35 (23; 17,30.4) NA

  4.6. Were complexities in 
the data (e.g., censor-
ing, competing risks, 
sampling of control 
participants) accounted 
for appropriately?

10 (6.6; 3.6,11.8) 28 (18.4; 13,25.5) 114 (75; 67.4,81.3) 2 (5.4; 1.3,20) - 35 (94.6; 80,98.7)

  4.7. Were relevant model 
performance measures 
evaluated appropriately?

28 (18.4; 13,25.5) 87 (57.2; 49.2,64.9) 37 (24.3; 18.1,31.9) 10 (27; 14.9,44) 13 (35.1; 21.2,52.1) 14 (37.8; 23.4,54.8)

  4.8. Were model overfit-
ting and optimism in 
model performance 
accounted for?

52 (34.2; 27.1,42.2) 84 (55.3; 47.2,63) 16 (10.5; 6.5,16.5) NA

  4.9. Do predictors and 
their assigned weights 
in the final model cor-
respond to the results 
from the reported multi-
variable analysis?

24 (15.8; 10.8,22.5) 8 (5.3; 2.6,10.2) 120 (79; 71.7,84.7) NA

Y  Yes, PY  Probably yes, N  No, PN  Probably no, NI  No information
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(n = 114/152; 95% CI: 67 to 81) of developed and 95% 
(n = 35/37; 95% CI: 80 to 99) of validated models.

Few models were appropriately evaluated using rel-
evant model performance measures (e.g., discrimination 
and calibration) during model development and valida-
tion (n = 28/152; 18%, 95% CI: 13 to 26 and n = 10/37; 
27%, 95% CI: 15 to 44, respectively). Discrimination 
performance measures (e.g., area under the curve) and 
other performance measures (sensitivity, specificity) were 
often reported during development (n = 47/62; 76% and 
n = 43/62; 69% of studies, respectively) and validation 
analyses (n = 11/14; 77% and n = 7/14; 50% of studies, 
respectively); but assessment of calibration of observed 
and predicted risks (e.g., via a calibration plot) was often 
missing in both analyses (n = 51/62; 82%; and n = 8/14; 
57%, respectively).

Few models accounted for possible over- and under- 
fitting and optimism (34%, 95% CI: 27 to 42) with a split 
sample approach as the most popular method to inter-
nally validate developed models (45% of studies). No 
information was found for 79% of models regarding their 
assigned weights in the final model and their correspond-
ence to the results of the main analysis.

A full description of the risk of bias assessment for each 
included study is provided on the Open Science Frame-
work (osf.io/95ayc/) [35].

Discussion
Summary of findings
In this systematic review we assessed the risk of bias of 
prognostic model development and validation studies 
that applied author-defined machine learning methods. 
We used a formal risk of bias tool and found studies 
were judged at high risk of bias for nearly all the mod-
els included in the review. Fewer validation analyses were 
at high risk of bias but more had an unclear risk of bias, 
due to poor and incomplete reporting. No difference was 
observed in the risk of bias between the different types of 
machine learning modelling approaches.

The analysis domain was the largest contributor to the 
high risk of bias amongst models, where insufficient sam-
ple size, categorisation of predictors, exclusion of miss-
ing data, split sample internal validation, poor reporting 
of relevant model performance measures (discrimina-
tion and calibration), and lack of information for the full 
(final) model were the main reasons. Few models also 
appropriately handled complexities in the data, for exam-
ple, censoring was not accounted for in most models 
developed for a time-to-event outcome. Model perfor-
mance measures were often discrimination and classifi-
cation performance measures and calibration measures 
were rarely reported.

Literature
There is a paucity of research systematically evaluat-
ing the risk of bias and details of factors contributing 
to increased risk of bias for machine learning based 
clinical prediction models. Existing reviews in oncol-
ogy have largely focused on models from specific medi-
cal sub-specialties and cancer types in which very few 
machine learning models are included and general 
modelling inferences are made [15, 36–39]. However, 
our findings are in line with the general findings of 
these reviews that models developed are often poor in 
methodological quality and at high risk of bias.

Our systematic review also supports evidence which 
has been highlighted by more general reviews of 
machine learning based prediction models [18, 21, 40–
43]. Christodoulou et  al. compared logistic regression 
to machine learning prediction models and observed 
many studies at a high risk of bias, those at high risk 
of bias tended to erroneously favour machine learning, 
and highlighted a need to follow reporting and meth-
odological guidance [18]. Sufriyana et  al. conducted a 
review about models in pregnancy care and also judged 
most models at high risk of bias, with negligible dif-
ferences in risk of bias between regression-based and 
machine learning modelling approaches [42]. Shung 
et al. reviewed models to predict outcomes in patients 
with gastrointestinal bleeding, and though they found 
good performance in these models, all were at high 
risk of bias, evaluated using the Quality In Progno-
sis Studies [44] casting doubt on their credibility and 
usefulness.

Insufficient sample size when developing and vali-
dating machine learning based prediction models is a 
major design flaw and contributor to risk of bias [18, 19, 
22]. We observed instances where sample size for (non-
regression based) machine learning models was based 
on sample size considerations for regression-based pre-
diction model studies. However, studies have shown 
that much larger sample sizes are needed when using 
machine learning methods and so the impact and risk of 
bias introduced from these insufficient sample sizes may 
be much larger [45, 46], as PROBAST is primarily aimed 
at regression-based prediction models [30, 31].

Strengths and limitations
This review highlights the methodological flaws and 
factors contributing to the high risk of bias associated 
with machine learning based clinical prediction mod-
els in oncology. Where existing systematic reviews have 
focussed on the quality of models in certain clinical 
sub-specialties and cancer types, we provide a broader 
view that focusses on the formal risk of bias assessment 



Page 12 of 14Dhiman et al. Diagnostic and Prognostic Research            (2022) 6:13 

using PROBAST of prediction model studies using 
author defined machine learning methods across 
oncology.

We searched MEDLINE and Embase, two major bio-
medical literature databases for studies that developed 
(and validated) a machine learning based clinical predic-
tion model. However, we may have missed eligible pub-
lications. We also restricted our search to models that 
were published during 01 Jan 2019 and 05 Sept 2019 
and given the high rate of publication in this field, we 
will have missed models published since our search date. 
However, for this study we aimed to review a contempo-
rary sample of publications to reflect current practice. 
Further, given the agreement between our findings and 
existing evidence, it is unlikely that additional studies 
would change the conclusion of this review.

We used the formal PROBAST risk of bias tool for 
assessing diagnostic and prognostic prediction mod-
els [30, 31]. We evaluated 152 models from 62 studies, 
with many studies developing and validating more than 
one model, in these instances we assumed the same risk 
of bias profile across all models that were developed, 
unless further model specific information was provided. 
This may limit our study by discounting machine learn-
ing models for which, methods of handling missing data, 
continuous predictors and other complexities of the data, 
are implicit to their analytical approach. However, we 
believe this is a fair assumption, especially for the ‘par-
ticipants’, ‘predictors’ and ‘outcomes’ domain which eval-
uates study design factors such as participant eligibility 
criteria and outcome and predictor definitions which are 
unlikely change with the modelling methods.

The risk of bias profile may differ in the analysis domain 
and in particular for signalling question 4.2. ‘Were con-
tinuous and categorical predictors handled appropri-
ately?’ Here, we remained conservative in our assumption 
as we found some studies that reported the analytical 
methods, despite using flexible machine learning mod-
els and did not want to assume the reverse (if a flexible 
machine learning model was developed, continuous pre-
dictors were by default modelled appropriately).

Although PROBAST was primarily designed for 
regression-based prediction, the majority of the 20 sig-
nalling items are applicable to machine learning based 
prediction model studies. No other risk of bias tool is yet 
available specifically for machine learning models. Some 
items in PROBAST may indeed be less straightforward to 
assess for machine learning methods (e.g., ‘do predictors 
and their assigned weights in the final model correspond 
to the results from the reported multivariable analysis?’), 
but all other items are applicable. It is also more likely 
that some relevant risk of bias items specific for machine 
learning models may be missing and that the overall risk 

of bias of these models are even poorer than what was 
found.

Future research
The Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRIPOD) 
collaboration has initiated the development of a TRIPOD 
statement specific to machine learning (TRIPOD-AI) 
to improve reporting conduct [47–49]. A similar initia-
tive has also started to develop a specific PROBAST-AI 
tool for diagnostic and prognostic prediction models 
developed using machine learning that includes addi-
tional items to evaluate to analysis and presentation on 
machine learning models. Based on items leading to high 
risk of bias in machine learning models, urgent methodo-
logical guidance is needed to support researchers devel-
oping clinical prediction models using machine learning 
to ensure use better and efficient modelling methods. 
There is a particular need for sample size guidance that 
will ensure informed and justified use to data to develop 
these models.

Given the rapid and evolving nature of the machine 
learning based clinical prediction models in oncology, peri-
odic reviews and re-reviews are needed so evidence reflects 
current practice. These reviews should both focus on indi-
vidual clinical domains and be cancer specific but should 
also focus on machine learning based prediction models.

Conclusions
The quality of machine learning based prognostic mod-
els is poor in oncology, and hence most models have a 
high risk of bias, limiting their usefulness in daily prac-
tice. Particular attention and methodological guidance is 
needed for sample size estimation and analysis methods 
to improve quality of machine learning based clinical 
prediction models. Researchers should improve the avail-
ability and reporting of developed models so they can be 
independently evaluated and considered to clinical prac-
tice. The reported performance of existing models should 
be interpreted with caution given their high risk of bias.
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