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Abstract

Clinical prediction models are developed with the ultimate aim of improving patient outcomes, and are often
turned into prediction rules (e.g. classifying people as low/high risk using cut-points of predicted risk) at some point
during the development stage. Prediction rules often have reasonable ability to either rule-in or rule-out disease (or
another event), but rarely both. When a prediction model is intended to be used as a prediction rule, conveying its
performance using the C-statistic, the most commonly reported model performance measure, does not provide
information on the magnitude of the trade-offs. Yet, it is important that these trade-offs are clear, for example, to
health professionals who might implement the prediction rule. This can be viewed as a form of knowledge
translation. When communicating information on trade-offs to patients and the public there is a large body of
evidence that indicates natural frequencies are most easily understood, and one particularly well-received way of
depicting the natural frequency information is to use population diagrams. There is also evidence that health
professionals benefit from information presented in this way.
Here we illustrate how the implications of the trade-offs associated with prediction rules can be more readily
appreciated when using natural frequencies. We recommend that the reporting of the performance of prediction
rules should (1) present information using natural frequencies across a range of cut-points to inform the choice of
plausible cut-points and (2) when the prediction rule is recommended for clinical use at a particular cut-point the
implications of the trade-offs are communicated using population diagrams. Using two existing prediction rules, we
illustrate how these methods offer a means of effectively and transparently communicating essential information
about trade-offs associated with prediction rules.
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Making sense of clinical prediction rules: a
proposal to aid assessment of clinical utility
Clinical prediction models are developed with the ultim-
ate aim of improving patient outcomes [8, 14]. Predic-
tion models take as inputs various patient characteristics
or risk factors (e.g. age, gender, comorbidities) and pro-
vide as an output a prediction of the probability of either
having or developing a particular disease or outcome

(called an “event”), for example, future heart disease,
cancer recurrence or lack of response to some treat-
ment. When used to predict the likelihood of having a
particular disease they are referred to as diagnostic
models, and when used to predict outcomes, they are re-
ferred to as prognostic models. Subsequent to model de-
velopment, prediction models should be internally and
externally validated, and then the performance of the
prognostic model evaluated in an implementation
study—so that impact on clinical outcomes can be deter-
mined [16, 29, 31].
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There are numerous ways that prediction models can
be translated for use in clinical practice. One approach
is to formulate a directive decision rule based on cut-
points for the predicted probabilities—for example, low
or high risk [2, 6, 8]. We refer to this as a prediction rule
[25]. Patient care might then be stratified on the basis of
these cut-points—and consequently, the model can be
thought of as acting like a prediction “rule” [16, 26]. An
alternative is to provide individual predicted risks which
can be used by the health care professional in guiding
therapeutic decisions for individual patients. A recent
systematic review found that three quarters of prediction
models, in cancer, report associated prediction rules
[22]. Here, our focus is on prediction models which are
used to risk-stratify patients or recommend treatment or
management strategies based on cut-points of predicted
risk. Examples of commonly used prediction rules are
the Ottawa ankle score [28] and the Framingham heart
score [32]. Other examples are the Canadian Syncope
Risk Score [30] and the QRISK2 score [4, 5] which we
include as case studies (Tables 1 and 3). Although pre-
diction rules can be based on multiple risk strata, for ex-
ample, low, medium or high risk, for simplicity, we focus

on the scenario where predicted probabilities are dichot-
omised, say, into two groups: low and high risk.

The importance of considering implications of
mis-classification of patients at risk
When a prediction model is intended to be used as a
prediction rule, it is important that the implications of
imperfect performance of the prediction rule are clear.
These implications include two types of misclassifica-
tion: classifying patients to be at high risk when they will
not go on to have the event and classifying patients to
be at low risk when they will go on to have the event.
The consequences of misclassification are highly con-
textual, depending on the implications in that particular
clinical setting. For example, as illustrated in Case Study
1 (Table 1), the ensuing decision can have serious conse-
quences when misclassifying a patient who is truly at
high risk as “not at risk”. On the other hand, the ensuing
decision can also have consequences when patients who
are not at risk are misclassified as “at risk” (see Case
Study 2, Table 3).
The extent of these potential misclassifications should

be transparent at all stages of reporting– whether that
be when the model is at the development stage, or when
the model is at the impact assessment stage. This is be-
cause transparent reporting of the extent of the potential
misclassification, along with contextual knowledge of the
consequences of these misclassifications, can allow the
users of these rules to determine how much confidence
they place in them. Transparency is important at the de-
velopment stage because it can help inform the potential
impact [26]: for example, in Case Study 1, a prediction
rule that clearly misclassifies too many people as low
risk might not have been deemed a suitable rule to take
forward to an impact study. This transparency is also
important at the impact assessment stage—for example,
in Case Study 2, if the rule under assessment was known
to misclassifying too many people as high risk, then
health care providers might re-consider the extent to
which they follow the prediction rule. Clear and
complete reporting of the performance of prediction
rules is thus important at all stages of model develop-
ment. Reporting results in a transparent way is a form of
knowledge translation—where the information on model
performance has to be translated by the researchers so it
is understood by the intended users, the health profes-
sionals. We underscore that our concern is about the
communication of the trade-offs or accuracy of the pre-
diction rule at hand, and this is different to communicat-
ing the estimated risk from the model [1].

Common ways of reporting model performance
The Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD)

Table 1 Case Study 1 the Canadian Syncope Risk Score

The Canadian Syncope Risk Score (CSRS) was developed to help identify
patients presenting to the emergency department with syncope who
are at risk of developing a serious adverse event, which typically occurs
with a prevalence of about 4% [30]. The model was proposed as a risk
stratification tool with cut-points signalling very low, low, high and very
high risk. The reported internally validated C-statistic for the developed
model was 0.88 (95%CI 0.85, 0.90), with sensitivity of 93% and specificity
of 53% for the cut-point “low risk”. The rule was summarised by the
statement “the tool will be able to accurately stratify the risk of serious
adverse events among patients presenting with syncope, including
those at low risk who can be discharged home quickly”. From the re-
ported sensitivity (93%), specificity (53%) and prevalence (0.036) in the
development dataset [30] we estimate the natural frequencies at several
cut-points and present a population diagram at one of several reported
cut-points for illustration.
Figure 1 illustrates how the use of population diagrams can help
quantify the implications of using this model at the cut-point “low risk”.
This figure illustrates that for this cut-point, whilst of the 540 patients
identified as “low risk” by the model only two have a serious adverse
event, for every 1000 patients assessed by the model, 460 will be classi-
fied as “at risk” of whom only 36 will have a serious adverse event.
Therefore, the model used at this cut-point is reasonably able to rule
out a serious adverse event, but at the cost of a large proportion of pa-
tients undergoing monitoring (i.e. not good at ruling in). Possible conse-
quences of this misclassification are longer stays in hospital for those
classified at risk; and a small proportion of patients classified as “low risk”
progressing to have a serious adverse event out of hospital. Whilst these
might be appropriate trade-offs, they are not obvious when summaris-
ing the performance by a C-statistic and sensitivity alone, but become
transparent when showing population diagrams. Table 2 presents these
natural frequencies across a range of cut-points. For example, if there
was a concern that the rule was misclassifying too many people as “at
risk” when they would not have the event, increasing the cut-point to 3
for example, would reduce the number classified as “at risk” from 460 to
119; but would increase the number classified as “not at risk” who would
have the event from 2 to 12.
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Initiative is a checklist of 22 minimum items for report-
ing of conduct and results from prognostic model stud-
ies ([3] a, [23]). The TRIPOD guidelines recommend
that model performance metrics be reported (item 10d)
and—whilst not directive in its recommendations—it in-
cludes measures of calibration, discrimination, C-

statistics, sensitivity and specificity and decision curve
analysis [23].
The most commonly reported measure of performance

of a prediction model is the C-statistic [22, 23]. Indeed,
in a recent review of prognostic models for COVID-19,
this was the only measure of predictive performance

Fig. 1 Population diagram to illustrate clinical ramifications of the Canadian Syncope Risk Score for acute management of syncope (cut-point
“low risk”). Each circle in the figure represents one person (1000 in total) presenting in the emergency department with syncope, of whom
approximately 36 will sustain a serious adverse event (shaded circle) and 964 will not (unshaded circle). Red cells (460) indicate people deemed
“at risk” using the risk score with a cut-point of “low risk”. Green cells are people deemed not “at risk”. These natural frequencies are derived from
the reported sensitivity of 93%; specificity 56% (for the low-risk cut-point); and prevalence (0.036) in the internally validated model [30]. The
internally validated C-statistic for the developed model was 0.88 (95%CI 0.85, 0.90).

Table 2 Summary of performance measures across a range of cut-points for the Canadian Syncope Risk Score using natural
frequencies

PPV/NPV positive (negative) predictive value, Pos +/Neg − screened positive or negative for the AE at the given cut-point, AE adverse event; assumed prevalence
0.03647; based on a population of 1000; red highlight: cut-point reported in population diagram (Fig. 1). The data under the “sample characteristics” columns are
taken from Taljaard [30]
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reported in a set of externally validated models [37]. The
C-statistic is a summary measure of performance across
all possible cut-points, but it does not quantify the per-
formance at a specific cut-point that may be used to
guide management decisions. Because it is a summary
performance measure, the C-statistic thus does not con-
vey the performance of the model when used as a pre-
diction rule. Other performance measures which
describe the model’s ability to predict risk values which
are close to actual levels of risk, called calibration, also
summarise overall model performance [26].
To determine how a model performs when used as a

prediction rule to risk stratify patients or guide decision-
making at recommended cut-points, the performance

must be summarised at the given cut-points. Two useful
metrics are sensitivity and specificity which describe the
rule’s ability to discriminate between those who will and
will not have the event at those cut-points [26]. Sensitiv-
ity is the ability of the model (at a specified cut-point) to
correctly identify those with the event, and specificity is
the ability of the model (at a specified cut-point) to cor-
rectly identify those without the event. Whilst a chosen
cut-point may maximise sensitivity, the trade-off may be
poor specificity. Measures such as sensitivity and specifi-
city make the trade-offs at different cut-points transpar-
ent. For example, in scenarios such as Case Study 1
(Table 1) where it is important not to miss an event,
preference would be given to a cut-point that maximises
sensitivity (i.e. a model that is good at “ruling in”). In
other scenarios, such as Case Study 2 (Table 3), where
there may be potential for over-treatment, it might be
important not to falsely diagnose an event and prefer-
ence would then be given to a cut-point that maximises
specificity (i.e. a model that is good at “ruling out”).
However, whilst sensitivity and specificity in theory
allow the consequences of misclassification to be ap-
parent, there is evidence that these concepts may be
misunderstood by health professionals, for example,
by confusing sensitivity with the probability of a pa-
tient having the event (when in fact it represents the
probability of testing positive if the patient has the
event) [12, 13].
Alternative ways of summarising a prediction rule’s

ability to discriminate (again at specified cut-points) are
the positive and negative predictive values (i.e. probabil-
ity a patient does (or does not) have the event when
classified as “at risk” (or “not at risk”) [12]. Positive and
negative predictive values also allow the consequence of
trade-offs to be transparent at different cut-points. How-
ever, whilst positive and negative predictive values pre-
vent the type of misinterpretation commonly observed
when interpreting sensitivity and specificity, they are also
a conditional probability which can be difficult to inter-
pret [18]. Conditional probabilities are hard to under-
stand because people need to know information on both
the probability the person does (or does not) have the
event of interest when classified as “at risk” (or “not at

Table 3 Case Study 2 the QRISK2 prediction model

The QRISK2 prediction model is a widely endorsed and validated model
to assess cardiovascular risk [15]. The QRISK2 model was developed
using data from 531 general practices in the UK, with information from
2.3 million patients. The model was developed so as to identify those
patients for whom interventions (i.e. statins) or more intensive follow-up
may be required. The models are commonly used as part of directive
decision-making at a cut-point of 20% predicted risk [15]. The models
were reported to perform well, had C-statistics in the region of 0.80, and
were subsequently validated in large cohorts [4, 5]. We report natural
frequencies for this prognostic rule at the 20% cut-point, derived using
information reported in the external validation cohort study for males
which had a reported C-statistic of 0.77 [[4], Table 4]. Using data from
this validation cohort, it is expected that out of 1000 (male) individuals
between the ages of 35 and 74 years, approximately 90 will have a car-
diovascular event over a 10-year period and 910 will not (i.e. a preva-
lence of 0.09) [4]. From data reported in Table 4 of Collins [4], we also
estimated the sensitivity of the rule to be 40% and specificity to be 88%.
Figure 2 illustrates that, when used at the cut-point of 20%, the predic-
tion rule does not do terribly well in identifying those who will have an
event: the rule is correctly able to identify 36 out of the 90 who will
have an event, but misclassifies 110 of the 910 individuals who will not
have an event as “at-risk”. So, for every person identified as needing
treatment, another 3 will be treated unnecessarily and two thirds of
those in need of treatment will not be treated. Thus, despite having a
C-statistic of close to 0.8, the model does not do terribly well at either
ruling-in future events or ruling-out future events [32]. If the extra treat-
ment poses no harm, which might arguably be the case for statin use,
then over-treating the low risk patients might not be of concern. None-
theless, presenting the results using the population diagram allows full
implications of potential under and overtreatment to be made transpar-
ent. Table 4 presents these natural frequencies across two different as-
sumed prevalence. For example, if the actual prevalence in the
population was lower than the assumed 9%, the model would identify
slightly fewer at risk; but proportionately more of those at higher risk
would be identified as “at risk”

Table 4 Summary of performance measures across a range of prevalence values for the QRISK2 score (cut-point 20%) using natural
frequencies

Values derived from natural frequencies reported in Collins [4] (Table 4) for males, using two different estimates of the underlying 10-year risk
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risk”)) and contextual information on the likelihood of
the event. Negative and positive predictive values thus
only communicate one part of this information, but do
not convey information on the underlying risk.

Comparing performance across several prediction
rules
Sometimes the performance of several prediction rules
are compared. For example, at the derivation stage, the
performance of a prediction model might be reported
across multiple cut-points, one or two of which are then
recommended as the cut-point for implementation in
practice (as in Case Study 1, Table 1). Or, sometimes
this comparison might be to an existing treatment strat-
egy (such as treat or monitor everyone). Reporting sensi-
tivity and specificity (or negative and positive prediction
values) across a range of cut-points allows readers to
infer whether a model would work well according to
preferences in the particular setting, but is again limited
because of the potential for these metrics to be mis-
understood.
Decision curves have been proposed as an alternative.

Decision curves allow inferences about whether the pre-
diction rule under consideration has a superior net-
benefit over alternative strategies (such as treat every-
one) [33]. It is recommended that decision curves are
presented over a range of cut-points that represent
plausible regions of acceptable trade-offs. At any given
cut-point, readers can then compare the net-benefit

across a set of different strategies (e.g. the prediction
rule under consideration and a strategy of treat every-
one). The strategy or rule that at any given cut-point
maximises the net-benefit is the optimal strategy/rule
under the assumption that the trade-offs at that cut-
point are acceptable. Yet, decision curves are often
viewed as difficult to understand and thus are unlikely to
be best suited when conveying information to the health
professionals who might use the rule in practice [34].
Furthermore, whilst decision curves are sometimes
wrongly assumed to convey information about cut-
points that optimise trade-offs, they actually offer a
means of comparing net-benefit across different strat-
egies (which might include a prediction rule), but do so
under the assumption that the trade-offs are acceptable
[17, 34].

What can be learnt from other areas of
communication
There is a large body of research that tells us that when
trying to determine if a trade-off is acceptable, people
need information about negative and positive predictive
values and contextual information on the likelihood of
an event [12, 18, 27]. The combination of these two
sources of information is known as natural frequencies
[13]. For example, when deciding whether to participate
in a screening programme for Down’s syndrome, people
need to know information on the probability that the
baby does (or does not) have Down’s syndrome when

Fig. 2 Population diagram to illustrate clinical ramification of the QRISK2 score (cut-point 20%). Each circle (1000 in total) in the figure represents
one male between the ages of 35 and 74 years, of whom approximately 90 will have a cardiovascular event over 10 years of follow-up (shaded
circles) and 910 will not (unshaded circles). Red shaded cells indicate people deemed “at risk” using the QRISK2 score with a cut-point of ≥20%.
Green cells are people deemed “not at risk”. These natural frequencies were derived using the reported natural frequencies in the external
validation cohort for males ([4], Table 4). The externally validated C-statistic was 0.77; estimated the sensitivity 40% and specificity 88%; and
prevalence of 0.09 over 10 years
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classified as “at risk” (or “not at risk”) and the likelihood
the baby has Down’s syndrome. This body of work un-
derscores the fact that, to increase understanding
amongst patients and members of the public, and conse-
quently facilitate more informed decisions, presenting
numerical information using natural frequencies is opti-
mal [27]. Presenting natural frequencies in a visual form
has also been shown to increase understanding [24].
Population diagrams (see Case Studies) are one way of
visually presenting natural frequencies [18]. Visual pre-
sentations have been successfully used in the area of
communicating the trade-offs of deciding to participate
in screening programmes [7, 18, 27].
Whilst health care professionals tend to have a better

ability to interpret statistical information than patients
and the public [11], they tend to have some difficulty in
interpreting statistical concepts [9, 12, 38]. Furthermore,
there is evidence from a systematic review of rando-
mised trials that presenting information using natural
frequencies and visual aids increases the understanding
of health professionals [13, 35].

Conveying performance of prognostic rules using
natural frequencies and population diagrams
We use two case studies to illustrate how natural fre-
quencies and population diagrams can be useful in help-
ing health professionals decide if a prediction rule has
potential to improve treatment or management strat-
egies (Tables 1 and 3). For each case study, we present a
population diagram for the prognostic rule at either a
recommended cut-point or a cut-point in common use
Figs. 1 and 2. Alongside this, for Case Study 1, we illus-
trate the trade-offs behind the choice of the cut-point
using natural frequencies. Cut-points considered to have
acceptable trade-offs might then be considered as candi-
date prediction rules for an impact study. In Case Study
2 (Table 3) we present the natural frequencies at one
cut-point only (simply because this is the accepted cut-
point used in practice). Presenting the associated popu-
lation diagram in Case Study 2 allows intended users of
the tool (for example health professionals in an impact
study) to understand the scope for mis-classification in a
rule they have been asked to implement.
Population diagrams are invariably referred to by

different names, such as pictograms and decision aids;
and can be presented in a variety of ways. Following
others, we base the diagrams on a population size of
1000 [10]. Furthermore, we note that the representa-
tion of each member of the population might take
any of a number of forms, for example a pictorial
representation of a person, or as in our population by
circles [18, 20]. The diagrams need a coding system
that allows two lots of two-way classifications and we
follow the format used by Loong [20], whilst noting

that alternative ways of presenting, such as scaled
rectangular diagrams, might be equally, if not more
appealing [21]. Others have suggested that the natural
frequency information should be communicated
alongside consequences of misclassification [36]. We
reiterate that even when presentation of these natural
frequencies suggests an apparent well-performing rule,
this is not sufficient to indicate if the model should
be used in clinical practice, and that all prediction
rules should undergo an impact analysis [26]. Indeed,
presentation of prediction rules in this way might
moreover suggest that the models should be used as
an aid in the decision process and not as a substitute
or decision rule [19].
Both case studies illustrate how there are trade-offs to

be made when using prognostic rules. In Case Study 1,
natural frequencies help reveal that when the model is
used at the suggested cut-point, whilst it is reasonably
able to rule out a serious adverse event, there is a cost—
a large proportion of patients are flagged as “at risk” and
so would undergo monitoring (i.e. the rule is not good
at ruling in). Whilst these might be appropriate trade-
offs, they are not obvious when summarising the per-
formance by a C-statistic and sensitivity alone, but be-
come transparent when showing population diagrams.
In Case Study 2, for every person identified as needing
treatment (i.e. identified as “at risk”), another three will
be treated unnecessarily and two thirds of those in need
of treatment will not be treated. Thus, despite having a
C-statistic of close to 0.8 (actual value 0.77), the model
does not do terribly well at either ruling-in or ruling-out
future events [32].

Recommendations for reporting prognostic rules
to allow trade-offs to be transparent
When prediction models are recommended to be
used as prediction rules there will be trade-offs to be
made at the chosen cut-point. These trade-offs should
be transparent to the proposed end user—the health
professional. Whilst we have not carried out a formal
evaluation, these case studies illustrate how in any
knowledge translation of prediction rules, population
diagrams and natural frequencies are good methods
to ensure that the performance of prediction rules
can be properly understood. Our goal is to prevent
poorly performing rules being adopted in clinical
practice because of a misconception that they work
well. We advocate not for the replacement of current
metrics but rather propose an effective communica-
tion tool at the point where researchers have to
translate their results to guide clinical decision-
making. We make a distinction between (1) providing
information in such a way that allows the implica-
tions to be compared across multiple cut-points (to
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facilitate the choice of candidate cut-points that rep-
resent a range of acceptable trade-offs in an impact
assessment study) and (2) providing information in
such a way that allows the implications of the trade-
offs at one cut-point to be considered (to facilitate
the limitations of a rule when used in clinical
practice).
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