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Abstract

Background: Prognostic markers use an individual’s characteristics at a given time to predict future disease events,
with the ultimate goal of guiding medical decision-making. If an accurate prediction can be made, then a prognostic
marker could be used clinically to identify those subjects at greatest risk for future adverse events and may be used to
define populations appropriate for targeted therapeutic intervention. Often, a marker is measured at a single baseline
time point such as disease diagnosis, and then used to guide decisions at multiple subsequent time points. However,
the performance of candidate markers may vary over time as an individual’s underlying clinical status changes.

Methods: We provide an overview and comparison of modern statistical methods for evaluating the time-varying
accuracy of a baseline prognostic marker. We compare approaches that consider cumulative versus incident events.
Additionally, we compare the common approach of using hazard ratios obtained from Cox proportional hazards
regression to more recently developed approaches using time-dependent receiver operating characteristic (ROC)
curves. The alternative statistical summaries are illustrated using a multiple myeloma study of candidate biomarkers.

Results: We found that time-varying HRs, HR(t), using local linear estimation revealed time trends more clearly by
directly estimating the association at each time point t, compared to landmark analyses, which averaged across time
≥ t. Comparing area under the ROC curve (AUC) summaries, there was close agreement between AUCC/D(t, t + 1)
which defines cases cumulatively over 1-year intervals and AUCI/D(t) which defines cases as incident events. HR(t)
was more consistent with AUCI/D(t), as estimation of these measures is localized at each time point.

Conclusions: We compared alternative summaries for quantifying a prognostic marker’s time-varying performance.
Although landmark-based predictions may be useful when patient predictions are needed at select times, a focus on
incident events naturally facilitates evaluating trends in performance over time.
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Background
Effective clinical practice relies on informed decision-
making, which is ideally guided by predictions of a
patient’s future clinical health status under alternative
treatment options. For example, a cancer patient who has
previously undergone treatment but is predicted to be at
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high risk of disease recurrence may benefit from adjuvant
therapy, whereas a patient at low risk of recurrence may
be spared the side-effects of aggressive treatment. Pre-
dictions of future disease events can be made using an
individual’s clinical characteristics, which serve as candi-
date prognostic markers for future onset or progression
of disease. The term “prognostic marker” may refer to a
single biomarker such as a specific serum protein mea-
sure, or to a composite score calculated as a combination
of multiple risk factors. For example, multimarker recur-
rence risk scores have been developed and now impact
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clinical care [1]. A good prognostic marker effectively
guides the choice and timing of therapeutic interventions,
enabling timely action for those individuals at greatest risk
of experiencing an adverse event.
Often, a marker measured at a single time point is

used to make decisions at multiple time points in the
future. For example, Harris et al. [11] review thirteen
categories of breast cancer tumor biomarkers and com-
ment on those that are recommended for use in practice,
including estrogen receptor status, progesterone recep-
tor status, and human epidermal growth factor receptor
2. However, any given marker may have predictive accu-
racy that varies over time. For instance, a marker may
discriminate accurately between high-risk and low-risk
populations shortly after baseline. However, 5 years after
baseline, the same biomarker may not retain accuracy and
therefore may not be useful for later clinical decisions.
The goal of this manuscript is to overview modern sta-
tistical methods that address the two following questions:
how can the prognostic potential of a biomarker be eval-
uated over time and how can different candidate markers
be directly compared?
Fundamental to epidemiology and clinical research are

the diagnostic concepts of sensitivity and specificity. Sen-
sitivity is essentially a cross-sectional measure describing
the probability of a positive test given that an individ-
ual is diseased. However, most disease states change over
time and basic descriptive epidemiology clearly distin-
guishes between prevalent and incident disease cases.
Only recently have statistical methods been developed
that can generalize cross-sectional accuracy concepts for
application to the time-varying nature of disease states,
and corresponding definitions of sensitivity and speci-
ficity have been proposed for both prevalent and incident
case definitions [12, 13]. These new concepts and asso-
ciated statistical methods are central to the evaluation of
the time-varying performance of any potential prognostic
marker.
When prognostic markers are studied using event-time

data from prospective studies, the outcome of interest is
the time until some key clinical event, such as death or
disease progression. At a fixed time point, the risk set, or
the set of individuals still at risk for the event, may be
partitioned into cases and controls. Cases are individuals
who experience the outcome, whereas controls are those
individuals who do not (yet) experience the event. More-
over, cases may be defined as incident cases or cumulative
cases. As the terms suggest, incident cases are individ-
uals who experience the event at the given time point,
whereas cumulative cases are those individuals experi-
encing events that are observed over a specified duration
of time. Controls are generally defined as the remaining
event-free subjects, and the performance of a prognostic
marker is determined by how accurately it distinguishes

between appropriately defined cases and controls. Note
that as time progresses and events accumulate, the sets
of cases and controls change, and so too may a marker’s
ability to distinguish cases and controls.
A number of existing statistical methods build upon

these basic ideas for the proper characterization of a
marker’s prognostic accuracy; however, knowledge of
these methods and the tools available to implement them
remains limited. As a result, although numerous stud-
ies seek to develop prognostic markers across a range
of disease settings, such studies often perform limited
evaluation of time-varying marker utility.
Our goal in this paper is to demonstrate the use of mod-

ern statistical methods for properly characterizing the
time-varying performance of a prognostic marker. In the
“Methods” section, we review standard summaries that
are typically used with event-time data in order to char-
acterize the association between a marker and survival.
Common summaries do not take into account the poten-
tial time-varying performance of markers. We introduce
and discuss four different statistical summaries that char-
acterize the time-varying prognostic ability of a marker. In
the “Results” section, we illustrate these approaches using
a multiple myeloma dataset. In the “Discussion” section,
we include a summary of the results, comparison of the
approaches, and some suggestions for future develop-
ment. Finally, we close with some practical recommenda-
tions in the “Conclusions” section.

Motivating example
Bargolie et al. [3] describe a prospective randomized
trial that compared alternative treatments for multiple
myeloma. Secondary analysis focused on select biomark-
ers measured at baseline, including albumin, creatinine,
and serum beta-2-microglobulin. The primary goal of
biomarker evaluation was to determine whether different
markers were more prognostic at different times dur-
ing follow-up. Specifically, a steep decline in survival was
apparent during early follow-up and it was hypothesized
that select markers may be prognostic during this period
while others may be prognostic at later times. Bargolie
et al. [4] used “landmark” survival analysis methods to
investigate their hypothesis. We review landmark meth-
ods and suggest alternative methods that can focus on
the time-varying evaluation and comparison of candidate
biomarkers. We present a detailed comparative analysis of
the myeloma study data.

Methods
Standard summaries
Time to event or survival data are typically obtained from
prospective studies where a continuous follow-up time
is observed for each participant and follow-up may end
either due to occurrence of the event of interest or due to
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censoring. Censoring is a common issue in such data, and
ignoring it can lead to biased assessments of a marker’s
performance. Therefore, appropriate evaluation of a prog-
nostic marker usually requires methods that are suitable
for censored survival data. By convention, we assume that
larger marker values are indicative of a poorer progno-
sis. When the opposite is true for a particular marker
such that smaller values are linked to poorer prognosis, we
transform the marker to fit the convention.
A common semiparametric approach to summariz-

ing the association between a marker and survival is to
fit a Cox proportional hazards regression model, which
assumes the following form [6]:

λ(t|x) = λ0(t)exp(�jβjxj) (1)

where λ(t|x) is the instantaneous rate of an event at time t,
specified as a function of a set of covariates x. The parame-
ter λ0(t) represents the baseline hazard function, and βj is
the regression coefficient or log hazard ratio correspond-
ing to covariate xj. In assessing the association of a single
markerM with failure, we simplify (1) to

λ(t|M) = λ0(t)exp(βM), (2)

where exp(β) is the hazard ratio corresponding to marker
M. The parameter β is equal to the logarithm of the
instantaneous relative risk or multiplicative increase in
the hazard of an event for a one-unit increase in M and
measures the association between the marker and sur-
vival. While regression methods can assess the strength of
association, they do not directly characterize the potential
ability of the marker to separate cases and controls, nor
do they directly measure the potential for the marker to
accurately guide medical decisions.
A common approach to showing the ability of a

marker to separate cases and controls is to display
estimates of survival curves for different subgroups of
patients grouped by their marker values. Frequently, non-
parametric survival estimates are obtained using Kaplan-
Meier (K-M) curves [14] for patients stratified on tertiles
or quartiles of themarker. A formalmethod for comparing

K-M survival curves is the log-rank test [17]. Graphically,
the more separated the K-M curves, the stronger the asso-
ciation of the marker with survival, and implicitly, the
marker has a greater ability to separate high-risk subjects
from low-risk subjects.
These two standard approaches can be used to sum-

marize association, but when scientific interest lies in
characterizing the time-varying performance of a marker
as a potential guide to decision-making, then alternative
measures are warranted. One approach is to consider a
marker-survival concordance index [10], while another
recent approach is to define and estimate time-dependent
error rates that extend the fundamental concepts of sensi-
tivity and specificity to survival outcomes.

Time-varying hazard ratios
In this section, we present two approaches that generalize
Cox regression to allow hazard ratios to change with time.

Using a changing “baseline time”
Landmark analysis [25] can be described as taking a
sequence of follow-up evaluations conditional on survival
to select “landmark” times. Specifically, a small number
of index time points are chosen and survival analysis is
done on only those subjects who remain event-free at
the specified index times and for follow-up beyond the
index times. Figure 1 illustrates the landmark idea for a
series of time points: baseline, 2 years, and 4 years. In this
approach, a Cox proportional hazards model would be
fit on the subset of remaining subjects at each landmark
time point, and a series of hazard ratios would be obtained
for follow-up beyond the different time points. A time-
varying association would be indicated by a change in
hazard ratios across the landmark analysis times. Because
Cox regression is a widely used tool for survival analysis
and is available in all standard statistical software pack-
ages, the landmark approach is straightforward to conduct
since it only requires that the data are subset to survival
beyond the landmark time in order to perform the anal-
yses. However, the interpretation of landmark analysis

Fig. 1 An illustration of landmark analysis. Solid circles represent events, and hollow circles represent censored subjects. For each landmark time
point, subjects still alive then are used for analysis. The solid vertical line represents the landmark analysis cutoff time point
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results is subtle because each landmark analysis returns
a hazard ratio estimate that is interpreted as the average
hazard ratio over the restricted time period from the land-
mark time (i.e., new baseline) to the end of the follow-up,
(tj,Tfinal). We denote these hazard ratios as HR(tj,Tfinal).
For example, using 2 years as a landmark time produces
a set of regression coefficient estimates which would then
be interpreted as the average hazard ratio over the time
period from 2 years until the end of follow-up (2,Tfinal)
and denoted as HR(2,Tfinal). By conducting landmark
analyses, we are summarizing the changes in the average
hazard ratio over nested time intervals that move away
from the original baseline and therefore can indirectly
infer changes in the underlying association between the
biomarker and the time-specific risk of death or hazard.
For example, if the landmark HR(2,Tfinal) is larger than
HR(3,Tfinal), then we can indirectly infer that the risk
associated with the marker is larger between times 2 and
3 years than the average HR after 3 years.
The landmark approach has recently been used by oth-

ers and is discussed in the book by van Houwelingen and
Putter [25]. As described above, Barlogie et al. [4] found
that the survival curve estimated from amultiplemyeloma
study had differently shaped segments and used this fea-
ture as motivation for an investigation of the time-varying
prognostic performance of candidate markers measured
in the study. They carried out landmark analyses to sum-
marize different segments of follow-up with the eventual
goal of determining which markers dominated each seg-
ment. Their choice of landmark time points was baseline,
3 years, 4 years, 5 years, and 7 years, a data-driven choice
based on exponential curves that best fit the observed sur-
vival curve. Theymeasured the time-varying associations of
the different variables by fitting univariate Cox models for
each marker at each landmark time point. The resulting
hazard ratios and associated p values were used to gauge
the relative prognostic abilities of the variables over time.
Landmark analysis is a useful descriptive tool but has

some key limitations. First, a hazard ratio obtained in this
manner is an average of the marker-disease association
starting at the landmark time point until the end of the
study period. However, if scientific interest lies in estimat-
ing the association at given time points and characterizing
how that association varies over time, then landmark
analysis only indirectly answers this question. If the asso-
ciation does indeed vary over time, then averaging across
time points is expected to flatten time trends. We address
this issue next, by considering an alternative approach that
estimates a time-varying coefficient function which yields
a time-specific hazard ratio.

Using time-dependent coefficients
As discussed above, the standard Cox regression model
assumes proportional hazards over time. In other words,

it assumes that the hazard ratio comparing the risk asso-
ciated with marker value M = m + 1 relative to M = m
remains constant over time. In the previous section, we
discussed an approach that sequentially applies this model
to landmark analysis times and captures one form of
time-varying association by fitting the model on nested
subsets of data. A more direct way of characterizing time-
varying associations is an extension of the Cox model that
allows time-varying coefficients where associated hazard
ratios vary as smooth functions of time. The time-varying
coefficient Cox model assumes the following form:

λ(t|x) = λ0(t)exp{�jβj(t)xj}.
Local linear maximum partial likelihood is a non-

parametric smoothing method for estimating time-
varying hazard ratios [5]. The general idea behind this
method is to use a locally weighted fitting at each time
point t to estimate the corresponding coefficient β(t).
Specifically, using the observed event times in a window
around a given t, the coefficient function is approximated
by a linear function or a first-order Taylor expansion, from
which a partial likelihood estimate for the linear function
can be obtained. The estimate of the smoothed coefficient
function, β(t), at t is then simply the value of the estimated
locally linear coefficient function at t. Details on estima-
tion and inference were provided by Cai and Sun [5]. The
local linear estimation technique has been implemented
as the llCoxReg() function of the R statistical soft-
ware package risksetROC, publicly available from The
Comprehensive R Archive Network (CRAN).
The Cox model with time-dependent coefficients is typ-

ically used in a scenario where covariate effects change
over time and is a natural approach to characterizing the
time-specific association between a candidate marker and
survival times. The advantage of using a time-varying
coefficient is that it permits inference regarding the asso-
ciation between a marker and subjects who fail at each
possible follow-up time t. In contrast to landmark meth-
ods where hazard ratios are interpreted as average associa-
tions over a select follow-up time period, the time-varying
coefficient function, β(t), characterizes a time-specific
rather than time-averaged strength of association. We
denote a hazard ratio obtained using this approach as
HR(t) = exp{β(t)}.
However, a potential issue with the use of landmark

methods or general varying coefficient regression meth-
ods is that scientific motivation for evaluating a biomarker
is often coupled with potential use of the biomarker to
guide medical decision-making. For example, the primary
purpose of a prognostic marker may be to predict patient
outcomes so that targeted therapy can be directed to
those subjects at greatest risk of progression or death.
The hazard ratio and the corresponding p value are sim-
ply measures of association and do not directly answer
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the question of predictive performance. A hazard ratio
thatmay be considered significant in studies of association
does not necessarily translate to high prediction accuracy.
More appropriate measures of accuracy would assess clas-
sification error rates, specifically generalizations of sensi-
tivity and specificity [15, 21].We consider time-dependent
receiver operating characteristic (ROC) curves as alter-
nate summaries. In the next section, we begin with some
background on time-dependent ROC curves, followed by
two specific approaches to the current problem of char-
acterizing the time-varying performance of a prognostic
marker.

Time-dependent ROC curves to characterize time-varying
prognostic performance
In this section, we present two approaches that focus on
evaluating biomarker accuracy by developing generaliza-
tions of sensitivity and specificity in order to characterize
changes over time in the potential of the marker to accu-
rately classify incident cases and current controls.
The traditional classification problem is based on a sim-

ple binary outcome, typically the presence or absence of
disease. In classifying individuals as having disease or not,
a marker is prone to two types of error. The first error
occurs when a diseased patient is incorrectly classified as
not having disease; this leads to delays in treatment, while
the disease continues to progress. The second error occurs
when conversely, a non-diseased individual is classified as
having disease; this subjects the individual to unnecessary
emotional distress and risks from follow-up medical pro-
cedures. Investigators typically aim to minimize these two
errors by usingmarkers that have both high sensitivity and
specificity.
The sensitivity of a marker is the probability that it is

positive in the presence of disease, or the true positive
rate (TPR). Specificity is the probability that the marker is
negative in the absence of disease, or one minus the false
positive rate (1 − FPR). More formally, let D denote dis-
ease, withD = 1 indicating presence andD = 0 indicating
absence of disease (for cases and controls, respectively).
By convention, larger marker values are assumed to be
more indicative of disease. For a continuousmarkerM and
a fixed threshold c, we define

sensitivity(c) = P(M > c|D = 1)
specificity(c) = P(M ≤ c|D = 0)

The receiver operating characteristic (ROC) curve is a
standard tool that uses a continuous marker’s sensitivity
and specificity to summarize its potential classification
accuracy [8, 9, 20, 24]. A series of binary splits of M for
all possible values of the threshold c are obtained, and the
corresponding values for sensitivity (or TPR) are plotted

against 1 − specificity (or FPR) to create the ROC curve
forM.
A good diagnosticmarker performs with high sensitivity

as well as high specificity. Therefore, a perfect marker has
an ROC curve that goes through the point (FPR, TPR) =
(0, 1), for 100% sensitivity and 100% specificity. On the
other hand, the 45° line represents the ROC curve for a
marker that is completely independent of disease and is
equally likely to classify both cases and controls as having
disease. In practice, ROC curves typically fall somewhere
in between these two extremes.
A marker’s classification accuracy is most commonly

quantified using a single-number summary measure, the
area under the ROC curve (AUC). The AUC also repre-
sents the probability that given a randomly chosen case
and a randomly chosen control, the case has a higher
marker value:

AUC = P(Mi > Mj|Di = 1,Dj = 0).

An AUC of 0.5 indicates no discrimination between cases
and controls, whereas an AUC of 1.0 indicates perfect
discrimination.
These definitions are specific to binary outcomes.

Implicit in the use of traditional diagnostic TPR and FPR
are current-status definitions of disease. More generally,
disease status changes with time and precise definitions
are necessary to include event (disease) timing in def-
initions of prognostic errors rates. In the last decade,
time-dependent ROC curve methods that extend con-
cepts of sensitivity and specificity and characterize prog-
nostic accuracy for survival outcomes have been proposed
in the statistical literature and adopted in practice. We
review two such time-dependent approaches, which draw
upon alternative fundamental case definitions: prevalent
or cumulative cases and incident cases.

Cumulative (prevalent) cases/dynamic controls
The standard definitions of sensitivity and specificity are
based on the cross-sectional classification of subjects into
one of two disease states. A natural extension to the sur-
vival context, where disease state is time dependent, is
to simply dichotomize the outcome at a time of interest,
t, and define cases as subjects who experience the event
before time t and controls as those who remain event-free
through time t. In other words, letting T denote survival
time and s denote the start time of case ascertainment
(often s = 0), cumulative cases (C) may be defined as sub-
jects with an event time prior to t, Ti ∈ (s, t), and dynamic
controls (D) as subjects who are event-free at time t,
Ti > t. Then, for a fixed threshold c, time-dependent
definitions for sensitivity and specificity follow:

sensitivityC(c|start = s, stop = t) = P(M > c|T ≥ s,T ≤ t)
specificityD(c|start = s, stop = t) = P(M ≤ c|T ≥ s,T > t).
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These definitions are equivalent to those presented origi-
nally by Heagerty et al. [12], who implicitly fixed s = 0 and
defined cases and controls simply as subjects with T ≤ t
and T > t, respectively. Here, we use the more explicit
notation of Zheng and Heagerty [27] to indicate the start
time s of the interval over which cases accrue, so thatT ≤ t
is written as T ∈ (s = 0, t).
For a fixed specificityD(c|s, t) = 1 − p (where p rep-

resents a fixed FPR), the time-dependent ROC value is
defined as the corresponding value of sensitivityC(c|s, t),
or ROCC/D

t (p). The superscript C/D denotes the use
of cumulative cases and dynamic controls. The time-
dependent AUC can be defined as

AUCC/D(s, t) = P(Mi > Mj|Ti ≥ s,Ti ≤ t,Tj ≥ s,Tj > t).

Here, AUCC/D(s, t) is the probability that given a ran-
dom subject i who experiences an event before time t
(case) and a random subject j who remains event-free
through time t (control), subject i has a larger marker
value than subject j, assuming both subjects are event-free
at time s.
Note that in the special case where no censoring is

observed, the above dichotomization at time t translates
to evaluating the marker using binary vital status out-
comes at any time t. However, when follow-up is incom-
plete, as is often the case, censoring can be handled
using non-parametric estimation methods for ROCC/D

s,t (p)
and AUCC/D(s, t) proposed by Heagerty et al. [12]. These
have been implemented in a publicly available R statistical
software package called survivalROC.
The cumulative/dynamic ROC curve is appropriate as

a tool for evaluating prognostic accuracy when scientific
interest lies in using a marker measured at baseline to
identify individuals who are at risk of an adverse event
before time t, in order to guide the timing of therapeu-
tic interventions. For example, in developing a screening
program, an individual who is at high risk of developing
disease within the next 5 years would be considered a good
candidate for intensive screening, whereas an individual

with a low predicted risk may forego such procedures. A
second example that we mentioned earlier relates to dis-
ease progression where a cancer patient who is at high risk
of recurrence within the next 3 years may benefit from
adjuvant therapy, while a patient at low risk of recurrence
may be spared the unnecessary side-effects of aggressive
treatment.
In motivation for this article, we seek to characterize

the time-varying performance of candidate markers and
the cumulative/dynamic ROC curve can be modified to
provide a natural complement to the landmark analysis
approach described above. We mimic landmark analy-
sis by subsetting data at a sequence of landmark time
points tL1 , tL2 , · · · , tLK to include only subjects with T ≥ tLk ,
k = 1, ...,K . We then define cases cumulatively as sub-
jects who have events over the following 1-year span, T ∈(
tLk , t

L
k + 1

)
, and controls such that T > tLk + 1. Figure 2

illustrates this idea.
Note that the superscript L is used to distinguish the

time points described in this modified approach from
those in a standard cumulative/dynamic ROC curve. Typ-
ically, time point t is used to define the endpoint of a
window which begins at time point s = 0 or baseline,
such that cases have T ∈ (0, t) and controls have T > t.
In contrast, in the modified approach, we re-define the
case accumulation window so that s = tLk and t = tLk + 1.
Specifically, cases are defined such that they accrue in
the window T ∈ (

tLk , t
L
k + 1

)
and controls such that they

remain event-free, T > tLk +1. The key utility of the cumu-
lative/dynamic ROC approach is to generalize standard
classification accuracy concepts to allow consideration of
time. A basic formulation simply considers cumulative or
prevalent cases that are observed during a well-defined
follow-up period.

Time-dependent ROC curves: incident cases/dynamic controls
The cumulative/dynamic ROC curve discussed above
uses a baseline or a landmark starting time point and a
future follow-up time point t to define cases. However,

Fig. 2 An illustration of ROCC/D
t mimicking landmark analysis. Solid circles represent events, and hollow circles represent censored subjects. For each

landmark time point, subjects that remain alive are used for analysis. The solid vertical line represents this landmark analysis cutoff. The dashed
vertical line represents the subsequent 1-year cutoff which is used to define cases versus controls
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survival analysis using Cox regression is based on the fun-
damental concept of a risk set: a risk set at time t is the case
experiencing an event at time t, and the additional individ-
uals who are under study (alive) but do not yet experience
the clinical event. Extension of binary classification error
concepts to risk sets leads naturally to adopting an inci-
dent (I) case definition where subjects who experience an
event at time t or have survival time Ti = t are the time-
specific cases of interest. As before, dynamic controls (D)
can be compared to incident cases and are subjects with
Ti > t. In this scenario, time-dependent definitions for
sensitivity and specificity are:

sensitivityI(c|t) = P(M > c|T = t)
specificityD(c|t) = P(M ≤ c|T > t).

Here, it follows that for a fixed specificityD(c|t) = 1 − p,
the time-dependent ROC value is defined as the corre-
sponding value of sensitivityI(c|t), or ROCI/D

t (p). Here,
the superscript I/D denotes the use of incident cases and
dynamic controls. The time-dependent AUC can then be
defined as

AUCI/D(t) = P(Mi > Mj|Ti = t,Tj > t)

and has an analogous interpretation to AUCC/D(t) above.
In this setting, marker performance over time may be
summarized using a global summary called the survival
concordance index (C-index):

C = P(Mi > Mj|Ti < Tj)

The C-index is interpreted as the probability that the pre-
dictions for a random pair of subjects are concordant with
their outcomes. In other words, it represents the proba-
bility that the subject who died at an earlier time had a
larger marker value. The C-index can also be expressed
as a weighted average of time-specific AUCs [13] and is
therefore easy to estimate.
Semiparametric estimation methods based on the Cox

model have been proposed for ROCI/D
t (p) and AUCI/D(t)

[13]. These have been implemented in a publicly avail-
able R package called risksetROC. Additionally, a non-
parametric rank-based approach for the estimation of
AUCI/D(t) has been proposed by Saha-Chaudhuri and
Heagerty [23]. The basic idea behind the rank-based
approach is to compute for each risk set the binary con-
cordance statistic using only the individual case and asso-
ciated risk set controls. Here, the time-specific case is
evaluated in terms of the number of risk set controls
who have a smaller marker value. A perfect marker would
have the case value greater than 100% of risk set con-
trols. Specifically, for a fixed time point t, we calculate
a percentile for each case in the risk set relative to the
controls in the risk set. The mean percentile at time t is
calculated as the mean of the percentiles for all cases in
a window around t. The summary curve, AUC(t), is then

estimated as the local average of case percentiles. The
non-parametric approach provides both a simple descrip-
tion for marker performance within each risk set, and by
smoothing these points, a final summary curve over time
characterizes time-dependent accuracy.
The incident/dynamic ROC curve is particularly appro-

priate for evaluating the performance of a marker mea-
sured at baseline or at multiple time points in a scenario
which requires therapeutic decisions to be made at a
sequence of time points. For example, in an organ trans-
plantation setting, interest lies in identifying patients who
are at higher risk of death in the near future, so that
they may be given priority for limited donor organs. The
recipient decision may be made at multiple time points as
donor organs become available, but is applicable to those
subjects who still remain at risk at those times.
The idea of evaluating the performance of a marker at

a sequence of time points lends itself naturally to eval-
uating time-varying performance just as Cox regression
allows risk modeling as a function of time. In the previous
section, we described a modified version of the cumula-
tive/dynamic ROC curve, which used landmark analysis
with cases defined cumulatively over 1-year windows. The
advantage of using the incident/dynamic ROC curve is
that it uses a finer timescale. For time point t, instead
of defining cases cumulatively over the following year, an
incident approach focuses on cases that occur at time t.
Additionally, AUCI/D(t) can be easily summarized across
timeusing theC-index as shownbyHeagerty andZheng [13].

Illustration of methods using multiple myeloma dataset
We illustrate the methods discussed above on a motivat-
ing dataset from a multiple myeloma treatment study.

Study description
The data that we analyze are from a prospective random-
ized trial that compared high-dose chemoradiotherapy
to standard chemotherapy among subjects with multi-
ple myeloma (MM). The trial was conducted by three
North American Cooperative Groups (Southwest Oncol-
ogy Group, Eastern Cooperative Oncology Group, and
Cancer and Leukemia Group B), which recruited subjects
who were untreated for and symptomatic of MM, were
≤ 70 years old, and had Zubrod performance status of 0 to
2 (performance status of 3 to 4 resulting from myeloma-
related bone disease was acceptable). Further details about
the study can be found in the original article [3].
For our analysis, 775 patients aged 25–70 were available,

with a median follow-up of 8.2 years and median survival
of 4.0 years. Survival was similar in both study arms, and
therefore, subjects were pooled together for prognostic
marker analysis.
A number of baseline variables were measured, of

which 8 were continuous and therefore considered by us
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as prognostic marker candidates. These were age, albu-
min, calcium, creatinine, hemoglobin, lactic hydrogenase
(LDH), platelet count, and serum beta-2-microglobulin
(SB2M). Barlogie et al. [4] used the same dataset to carry
out the landmark analysis described above.

Analytic approach
To estimate hazard ratios, we log-transformed variables
with skewed distributions; these included albumin, crea-
tinine, LDH, and SB2M. Additionally, recall that a hazard
ratio represents the increase in risk associated with a
one-unit increase in the marker value. Since the markers
were measured on different scales, we made the hazard
ratios for different markers comparable by standardizing
the markers. Note that log-transformation and standard-
ization are done to facilitate marker comparison when
using regression methods but are not necessary for time-
dependent sensitivity and specificity evaluation. ROC
curve summaries are based on ranking marker values in
cases relative to controls and are thus unchanged by any
monotone transformation of the data [20].
For landmark analysis, we chose time points t = 0,

1, 2, 3, 4, 5, and 6 years and estimate HR(t,Tfinal) and
AUCC/D(t, t + 1) at each of these time points. We also
estimated both time-specific summaries, AUCI/D(t) and
HR(t), using non-parametric smoothing methods. Band-
width selection for AUCI/D(t) was done using cross-
validation in order to obtain the bandwidth that min-
imized the integrated mean standard error for each
marker. For HR(t), we used a fixed bandwidth of 0.3.
We interpolated to estimate both AUCI/D(t) and HR(t) at
6-month intervals, so that t = 0, 0.5, 1, 1.5, 2, ..., 6 years.
We computed 95% bootstrap confidence intervals by

resampling the data 200 times and obtaining percentile-
based confidence intervals. Bias-corrected confidence
intervals may also be calculated to adjust for finite-sample
bias [26].

Results
Figures 3 and 4 and Table 1 show comparisons of the
four methods applied to the multiple myeloma dataset.
In Fig. 3 (left panel), we see little separation in the land-
mark HR(t,Tfinal) values between the different variables
with initial hazard ratios approximately 1.30. All markers,
with the exception of age, show a decline in performance
over time. In Fig. 4 (left panel), we observe similar pat-
terns across variables in terms of AUCC/D(t, t + 1) with
qualitative similarity to the landmark results. Early val-
ues of AUC are approximately 0.60–0.65 but tend to
decline toward 0.50 by year 5. The only inconsistency is
in the performance of calcium, which appears to decline
over time when assessed using HR(t,Tfinal), whereas with
AUCC/D(t, t+1), we see an increase followed by a plateau.
The right panel of Fig. 4 shows very close agreement

betweenAUCC/D(t, t+1)which defines cases cumulatively
over 1-year intervals andAUCI/D(t)which defines cases as
incident events. Finally, HR(t) (Fig. 3, right panel) is more
consistent with AUCI/D(t).
Compared to HR(t,Tfinal), we see more non-monotonic

trends across time for AUCC/D(t, t + 1), AUCI/D(t), and
HR(t). These results are not surprising, given that esti-
mation of these measures is localized at each time point
in contrast to the landmark HR summaries. For exam-
ple, platelet count has relatively poor performance at
baseline, peaks around 3 years, and continues to decline
thereafter. In contrast, the time-specific trend gets aver-
aged over follow-up time intervals by the landmark
summary, HR(t,Tfinal), and shows a steady decline in per-
formance. As another example of HR(t,Tfinal) flattening
trends over time, observe that SB2M, creatinine, LDH,
and hemoglobin have relatively good performance early
on (HR(t) = 1.38 − 1.56 at t = 1 year), which steadily
declines over time (HR(t) = 0.97−1.21 at t = 5 years). This
trend is captured by all methods, except for HR(t,Tfinal)
(0.92 − 1.11 at t = 1 year versus 0.97 − 1.08 at t = 5 years).
In general, we see much better separation between the

different markers using AUCC/D(t, t + 1), AUCI/D(t), and
HR(t), compared to HR(t,Tfinal). A notable difference is
seen between the hazard ratios of the left and right pan-
els of Fig. 3. For example, at t = 1 year, the top and bottom
ranking markers with respect to HR(t) have values of 1.56
and 1.13, respectively. In contrast, the top and bottom
ranking markers with respect to HR(t,Tfinal) have values
of 1.28 and 1.08, respectively.
The rankings of the different variables are found to

be fairly consistent across AUCC/D(t, t + 1), AUCI/D(t),
and HR(t). However, the estimates of the different sum-
maries indicate that what may be considered fairly strong
associations based on hazard ratios do not necessarily
translate to good predictive ability as measured using
AUC(t). For example, consider the top 4 ranking mark-
ers based on HR(t) at t = 1 year: SB2M, creatinine,
hemoglobin, and platelet count, with statistically sig-
nificant HR(t) values ranging from 1.46 to 1.56. A
one-unit increase in each of these markers is associ-
ated with an added risk of approximately 50%. Mean-
while, the corresponding AUCI/D(t) values range from
0.592 to 0.619, indicating poor predictive performance at
1 year.
Finally, our results are qualitatively different from those

of [4], who concluded that SB2M retains good prognos-
tic performance for all landmark time points, including
later time points of 3, 4, 5, and 7 years. They dichotomized
SB2M at 3.5 mg/L in their analysis while we analyze the
biomarker in a continuous form after log-transforming
and standardizing it. Our results using a continuous vari-
able for SB2M show a HR(t) = 1.56 at 1 year versus 1.08
at 5 years and AUCI/D(t) = 0.619 at 1 year versus 0.526 at
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Fig. 3Marker performance over time using hazard ratios from landmark analysis and local linear estimation. The markers have been split up into two
sets displayed in the top panel (platelet count, SB2M, creatinine, and age) and the bottom panel (albumin, calcium, LDH, and hemoglobin) for
clarity. This figure appears in color in the electronic version of this article

5 years. Using landmark analysis also yields weaker results
with HR(t,Tfinal) = 1.25 at 1 year versus 1.07 at 5 years.

Discussion
We presented key summaries for evaluating the time-
varying prognostic performance of a marker measured at
baseline. A basic epidemiologic concept that distinguishes
alternative summaries lies in the general idea of using
cumulative versus incident events to define cases. Survival
analysis using hazardmodels naturally focuses on incident
cases. We found that the use of incident events natu-
rally facilitates evaluation of time-varying performance
either through the use of time-dependent hazard ratios
or through time-dependent accuracy summaries. Com-
paring the two hazard ratio summaries, we found that
local linear estimation of HR(t) revealed time trends more
clearly given that it directly estimated the association at
each time point t. In contrast, landmark analyses averaged
across all time with T ≥ t, resulting in a time-averaged

rather than time-specific association summary. Compar-
ing the two time-dependent ROC curve summaries, we
found that AUCI/D(t) matched AUCC/D(t, t + 1) very
closely; however, the latter used a coarser time scale. In the
current descriptive context, hazard ratios obtained using
local linear estimation and AUCI/D(t) are potentially more
desirable summaries compared to their landmark analysis
counterparts. However, the sequential use of cumulative
cases or landmark-based predictionsmay be useful in clin-
ical settings where patient predictions are needed at select
times.
Another key difference in the summaries was the use of

hazard ratios from Cox regression versus ROC curves. A
standard approach to analyzing survival data is to estimate
hazard ratios. However, when the primary goal is to char-
acterize prognostic performance, the question of interest
may be more naturally addressed through approaches
that quantify time-dependent classification error rates.
Although our analysis showed similar patterns over time
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Fig. 4Marker performance over time using AUCC/D and AUCI/D (along with C-index estimates and corresponding 95% bootstrap confidence
intervals). The markers have been split up into two sets displayed in the top panel (platelet count, SB2M, creatinine, and age) and the bottom panel
(albumin, calcium, LDH, and hemoglobin) for clarity. This figure appears in color in the electronic version of this article

for time-varying hazard ratios and AUCI/D(t), the latter
has the advantage of being easy to interpret and compare
across candidate markers measured on different scales.
As discussed earlier, the hazard ratio is a measure of
association and will depend on the scale of the marker,
whereas time-dependent ROC curves quantify sensitiv-
ity and specificity. AUCI/D(t) is a summary of these error
rates and does not depend on the marker scale. More-
over, the hazard ratio does not lend itself to drawing clear
conclusions regarding the strength of prognostic accuracy.
While the AUC has a familiar and interpretable range of
0.5 to 1.0, it is unclear on the hazard ratio scale how large
an association must be in order to indicate good prognos-
tic performance. As has been noted by others [15], what
constitutes a significant hazard ratio in studies of associ-
ation does not necessarily reflect strong classification or
prediction accuracy. For example, we saw with the mul-
tiple myeloma dataset that statistically significant hazard
ratios of approximately 1.5 translated to AUCI/D(t) values

of only 0.6. Hazard ratios are also sensitive to the scale on
which the marker is measured. Recall the marker trans-
formations that were required in the multiple myeloma
dataset in order to standardize markers so that their cor-
responding hazard ratios would be comparable. The ROC
curve, on the other hand, remains unchanged by mono-
tone transformations of the data. Finally, using available
software, it is much faster to compute AUCI/D(t) than
it is to compute local linear estimates for hazard ratios
and therefore calculation and comparison of AUCI/D(t)
for candidate markers can be performed for exploratory
analyses.
A drawback of using ROC curves to summarize perfor-

mance is that they handle ties in marker values poorly.
This property can be problematic for categorical markers,
where ties are highly prevalent. Given the common clini-
cal practice of dichotomizing markers to classify patients
into high- and low-risk groups, mishandling of ties can
especially be an issue. For example, all of the markers
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Ĥ
R

95
%
C
I

Ra
nk

Â
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studied by [4] were either inherently categorical (for
example, performance status), or they were dichotomized
versions of continuous markers. If a candidate marker is
categorical or if a clinically established marker threshold
is to be used to dichotomize the marker, regression meth-
ods are more appropriate than ROC curve methods for
ranking candidate markers. However, if clinically estab-
lished thresholds do not exist but are of interest, then
ROC curves provide an avenue for exploring potential
thresholds with the goal of optimizing the sensitivity and
specificity.
We focused on markers measured only at baseline.

However, the incident case ideas presented here can
also be extended to longitudinal markers. A Cox regres-
sion model with time-varying covariates would handle a
marker measured at multiple time points. Additionally,
the incident/dynamic ROC curve can easily accommo-
date a time-varying marker (Bansal A, Heagerty PJ, Saha-
Chaudhuri P, Liang CJ: Dynamic Placement Values: A
Basis for Evaluating Prognostic Potential, unpublished).
Additionally, we focus on ROC curve methods for eval-

uating any single “biomarker,” which may commonly be
the risk score derived from a model that includes multi-
ple factors. The methods we discuss for evaluating a risk
score in validation data are independent of those used
initially for model selection in training data, in that they
do not rely on the assumptions that may be necessary
for the development of the risk score. One may use stan-
dard Cox regression or more flexible, modern machine-
learning approaches for model development in training
data. Regardless of the chosen modeling approach, the
ultimate prognostic model is then fixed and used in the
validation data to provide patient predictions of the dis-
ease outcome, i.e., a risk score.
Finally, our focus in this article is on evaluating a sin-

gle prognostic marker or score or comparing individual
candidate markers. Combining markers to improve per-
formance is a related, but separate problem that we do not
address here. We have previously published work aimed
at establishing intuition about the expected incremen-
tal value under common, biologically motivated scenarios
in the diagnostic setting with binary outcomes [2]. We
expect similar results to hold in the current setting of
prognostic markers with survival outcomes. However, as
mentioned above, we assume here that if the time-varying
performance of a multivariate risk score is being evalu-
ated, optimal variable selection and model development
have taken place prior to evaluation. The methods that
we detail here can then be applied to any given risk score
generated from a multivariate survival model. One of our
findings from the multiple myeloma data analysis was that
the AUCs for even the top ranking single markers did
not exceed 0.7. This is not surprising for single mark-
ers, which often fail to have adequate performance on

their own. In the development of multivariate prognostic
scores, the question is often about evaluating the incre-
mental value gained from a newmarker when added to an
existing baseline marker or model. The change in AUC is
the most popular metric for evaluating incremental value.
The time-varying AUC presented here can be used to
evaluate the time-varying incremental value of a marker
by estimating the time-varying AUCs of the baseline and
enhanced models and taking their difference. Addition-
ally, a number of alternative measures have been proposed
in recent literature for binary outcomes, namely the net
reclassification index (NRI) [18, 19] and integrated dis-
crimination index (IDI) [19]. Extensions of thesemeasures for
time-dependent outcomes have been developed [7, 16, 22]
and provide alternative summaries of the time-varying
incremental value of a marker.

Conclusions
It is common clinical practice to use the characteris-
tics of a patient to predict his or her prognosis and in
turn use such predictions to guide therapeutic decisions.
Often, measurements from a single time point are used to
guide decisions at multiple subsequent time points. How-
ever, predictive performance may vary over time. Accu-
rately quantifying a marker’s time-varying performance
would enable more informed decision-making. We illus-
trated alternative summaries and showed that although
landmark-based predictions may be useful when patient
predictions are needed at select times, a focus on incident
events naturally facilitates evaluating trends in perfor-
mance over time.
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