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Abstract

Background: Biomarker studies may involve an ordinal outcome, such as no, mild, or severe disease. There is often
interest in predicting one particular level of the outcome due to its clinical significance.

Methods: A simple approach to constructing biomarker combinations in this context involves dichotomizing the
outcome and using a binary logistic regression model. We assessed whether more sophisticated methods offer
advantages over this simple approach. It is often necessary to select among several candidate biomarker combinations.
One strategy involves selecting a combination based on its ability to predict the outcome level of interest. We
propose an algorithm that leverages the ordinal outcome to inform combination selection. We apply this algorithm to
data from a study of acute kidney injury after cardiac surgery, where kidney injury may be absent, mild, or severe.

Results: Using more sophisticated modeling approaches to construct combinations provided gains over the simple
binary logistic regression approach in specific settings. In the examples considered, the proposed algorithm for
combination selection tended to reduce the impact of bias due to selection and to provide combinations with
improved performance.

Conclusions: Methods that utilize the ordinal nature of the outcome in the construction and/or selection of
biomarker combinations have the potential to yield better combinations.
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Background
In some clinical settings, a patient can experience one
of several outcomes. For example, he can have no, mild,
or severe disease. In the setting of cancer diagnosis, a
patient can be disease-free or have cancer at one of sev-
eral grades. However, it may be most important to be
able to predict one particular level of the outcome, typ-
ically the level that poses the greatest health threat. In
the examples just given, this may be severe disease or
the presence of high-grade cancer. Here, investigators are
interested in “single-level prediction,” but an ordinal out-
come is available. Ordinal outcomes are polytomous, or
multilevel, outcomes whose levels can be ordered by, for
example, their clinical significance. In contrast, nominal
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outcomes are polytomous outcomes whose levels cannot
be ordered. The question becomes whether and how the
information from the ordinal outcome can be leveraged to
improve prediction of the outcome level of interest.
It is becoming increasingly common for studies to mea-

sure several biomarkers in each participant. Such studies
often seek to develop a combination of biomarkers that
can be used in risk prediction. Developing a biomarker
combination involves fitting, or constructing, a combi-
nation and, if more than one combination is available,
selecting from among the candidates. When an ordinal
outcome is available, the development of such combina-
tions becomes potentially more complicated; we consider
two such complications.
The first complication relates to the construction of

biomarker combinations, specifically, how the biomarkers
should be combined when an ordinal outcome is available
but there is interest in single-level prediction. A natural
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and common approach is to dichotomize the outcome
and fit a binary logistic regression model. Of course, this
discards some information available in the ordinal out-
come. We evaluate the potential benefits of alternative
regression methods that utilize the ordinal outcome.
The second complication concerns how a biomarker

combination should be selected. In many studies, the
number of candidate biomarker combinations is quite
large. Investigators may consider, for example, all possi-
ble pairs of biomarkers. In a study with 20 biomarkers,
there would be nearly 200 such candidate combinations.
One strategy is to choose the combination with the best
performance in terms of single-level prediction. As with
combination construction, it may be possible to leverage
the additional information in the ordinal outcome to aid in
combination selection.We propose an algorithm for doing
so and provide examples to illustrate the benefits of this
method.
We illustrate the application of our combination selec-

tion algorithm to data from the Translational Research
Investigating Biomarker Endpoints in Acute Kidney
Injury (TRIBE-AKI) study, a study of acute kidney injury
(AKI) after cardiac surgery [1]. This study aims to use
biomarkers measured immediately after surgery to pro-
vide an earlier diagnosis of AKI, which is typically not
diagnosed until several days after surgery. Clinical defini-
tions of AKI include both mild and severe types, though
severe AKI is of primary clinical interest due to its impact
on long-term morbidity and mortality [2]. As a result,
there is interest in developing a biomarker combination to
diagnose severe AKI.

Constructing combinations
We consider a set of predictors X and an outcome D with
K levels.

Models for binary outcomes
One set of regression-based approaches involves treating
the outcome as binary by first dichotomizing D and/or
subsetting the data and subsequently fitting one or more
binary logistic regression models [3–7]. These approaches
include:

(i) Simple. One binary logistic model based on
dichotomizing D at some fixed level, k′:
logit

{
P(D ≤ k′|X = x)

} = α + βTx [8–12].
(ii) Each level vs. others. K binary logistic models

comparing each level to the combination of the other
levels: logit {P(D = k|X = x)} = αk + βT

k x,
k = 1, . . . ,K [13, 14].

(iii) Each level vs. reference. (K − 1) binary logistic
models comparing each level to a reference level k∗:
log {P(D = k|X = x)/P(D = k∗|X = x)} =
αk + βT

k x, k �= k∗ [15, 16].

(iv) Sequential. (K − 1) binary logistic models comparing
each level to the combination of the levels above it:
logit {P(D = 1|X = x)} = α1 + βT

1 x,
logit {P(D = 2|D ≥ 2,X = x)} = α2 + βT

2 x, etc. [13].

Models for nominal outcomes
The baseline-category logit model is a very flexible
approach that considers the categorical nature of the out-
come but does not incorporate the ordering [7, 17, 18].
The baseline-category logit model, typically referred to as
the “multinomial model,” can be written as

log {P(D = k|x)/P(D = K |x)} = αk + βT
k x,

k = 1, . . . ,K − 1 [17]. Thus, the baseline-category logit
model allows the effect of the predictors to vary with
the level of the outcome [17]. The set of models speci-
fied by the each level vs. reference approach (defined in
the “Models for binary outcomes” section) with k∗ = K
as the reference level is parametrically equivalent to the
baseline-category logit model.

Models for ordinal outcomes
Several regression models are available that fully model
D (i.e., do not combine different levels of the outcome
together) while accounting for the ordered, categorical
nature of D [7, 17]. Such ordinal methods do not assume
equal spacing between the levels of D; they simply use the
ordering of the levels of D [19].

Cumulative logit model The cumulative logit model can
be written as

logit {P(D ≤ k|X = x)} = αk − βTx, (1)

k = 1, . . . ,K−1, where the αk are ordered in k [17]. Under
model (1), the log cumulative odds ratio is proportional
to the distance between the predictor values being com-
pared and the proportionality constant does not depend
on k [17]:

logit {P(D ≤ k|X = x1)} − logit {P(D ≤ k|X = x2)}
= βT (x1 − x2).

As a result of this proportionality (sometimes referred
to as the parallel slopes assumption), model (1) is also
called the proportional odds model [17]. It is possible
to include a separate β vector, βk , for each value of k
[4, 17, 20, 21]. However, doing so may lead to crossing of
the cumulative probability curves P(D ≤ k|X = x) for
some values of X, violating the ordering of the cumulative
probabilities [17, 20]. In other words, for a given value x,
P(D ≤ 1|X = x) may exceed P(D ≤ 2|X = x), for
example, which is not valid. Importantly, the estimates
provided by the cumulative logit model may be biased
under case-control sampling [12, 22].
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Adjacent-category logit model The adjacent-category
logit model can be written as

logit {P(D = k|X = x)/P(D = k + 1|X = x)}
= αk + βTx,

k = 1, . . . ,K − 1 [17]. The adjacent-category logit model
can be used with data from case-control studies [17]. The
set of logits produced by the adjacent-category logit model
is equivalent to that produced by the baseline-category
logit model (defined in the “Models for nominal out-
comes” section), except that the adjacent-category logit
model assumes a common β [17]. Thus, the adjacent-
category logitmodel takes advantage of the ordinal outcome
to achieve parsimony but does not involve cumulative
probabilities [17, 20]. The adjacent-category logit is more
natural when there is interest in describing the effect of
the predictor in terms of the odds relating to particular
outcome levels since it easily allows the comparison of any
two levels of the outcome [20]. Importantly, the issue dis-
cussed above for the cumulative logit model with separate
effects βk (i.e., potential crossing of the cumulative proba-
bility curves, which violates the ordering of the cumulative
probabilities) is not a problem for the adjacent-category
logit model with separate effects since this model does not
involve cumulative probabilities [17].

Continuation-ratio logit model The continuation-ratio
logit model can be written as

logit {P(D = k|D ≥ k,X = x)} = αk + βTx,

k = 1, . . . ,K − 1, where the αk are ordered in k [17].
The continuation-ratio logit model may be useful when a
sequential mechanism determines the outcome, i.e., when
individuals have to “pass through” one level of the out-
come to get to the next [17, 19]. The continuation-ratio
logit model considers conditional probabilities as opposed
to cumulative probabilities [19]. As with the cumulative
logit model, the continuation-ratio logit model restricts
the regression coefficients to be the same for all levels of k
[19, 21, 23]. Allowing a separate β vector for each levels of
k gives the sequential approach defined in the “Models for
binary outcomes” section [4, 19]. The estimates provided
by the continuation-ratio logit model may be biased under
case-control sampling [12].

Stereotype model The stereotype model was proposed
by Anderson [24] as a sort of compromise betweenmodels
that incorporate the ordinality of the outcome and more
flexible models (i.e., the baseline-category logit model
defined in the “Models for nominal outcomes” section,
which allows the entire coefficient vector to vary with k).
The stereotype model actually includes a hierarchy of
models that vary in flexibility, as defined by the dimen-
sion of the model [24]. The dimension of the model can

range from one to the maximum dimension d, which is
related to the number of predictors and outcome lev-
els [24]. A stereotype model of maximum dimension is
a reparameterization of the baseline-category logit model
(defined in the “Models for nominal outcomes” section)
[25]. While different dimensions are possible, the term
“stereotype model” is generally reserved for the one-
dimensional model and we focus on that model here. This
model can be written as

log {P(D = k|x)/P(D = K |x)} = αk + φkβ
Tx, (2)

k = 1, . . . ,K − 1 [24]. Essentially, this model allows some
variation in the coefficient vector, but restricts βk = φkβ
[24]. Identifiability constraints must be imposed on the
φk ; typically, these are φ1 = 0 and φK = 1 [24]. The
definition of the stereotype model also typically includes
the requirement that φ1 < φ2 < . . . < φK ; when this
holds, the model given in (2) is an ordered model [24].
However, it has been noted that this ordering does not
need to be specified a priori and most statistical packages
(e.g., R and Stata) do not impose such a restriction [4, 25].
In his examples, Anderson [24] did not assume ordering
among the φk ; rather, he fit the one-dimensional model
and evaluated whether the estimates φ̂k were ordered.
Thus, Anderson [24] recommended fitting a fairly flexible
model and assessing whether the data suggest ordering. In
other words, the model allows users to judge whether the
outcome levels are ordered or not based on the estimates
φ̂k , giving a data-driven analysis of ordering [23]. The
stereotype model can be used with case-control data [12].

Comparingmodeling approaches
Some work has been done to compare the models
described above, particularly in terms of the efficiency of
the parameter estimators. Briefly, gains in efficiency have
been found for the baseline-category logit model relative
to the each level vs. reference approach [15, 16], for the
cumulative logit model relative to the simple approach
[4, 6, 9], and for the stereotype model relative to the
baseline-category logit model [26]. These results suggest
that information can be gained from using all of the data
in a single model, not dichotomizing D, and/or incorpo-
rating the ordinal nature of D.
Armstrong and Sloan concluded that in general, if the

order of the outcome levels can be specified with confi-
dence, models for ordinal outcomes, such as the cumu-
lative logit model or the continuation-ratio logit model,
are preferable to more flexible models [4]. In other words,
it is reasonable to expect that when the outcome is ordi-
nal, information is gained when this ordinality is used
by the model [12]. In comparing the cumulative logit
model to the simple approach, Risselada et al. argued that
the impact of “mild violations” of the proportional odds
assumption is expected to be less severe than the loss of
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information resulting from dichotomizing D [7]. On the
other hand, others have noted that ordinal models become
“increasingly unrealistic” as the number of outcome levels
and/or predictors increases [9, 26].

Applications in risk prediction
Polytomous outcomes are frequently encountered in
the risk prediction setting and a common approach is
to dichotomize the outcome and fit a binary logistic
regression model (the simple approach defined above)
[3, 7, 14, 27]. The literature on using polytomous out-
comes for single-level prediction has largely focused on
the area under the receiver operating characteristic (ROC)
curve (AUC) as a measure of predictive capacity. Briefly,
the AUC assesses the ability of a model to discriminate
between individuals who have or will experience the out-
come level of interest and those who do not have or will
not experience the outcome level of interest; the AUC for
a model that is able to perfectly separate these groups is 1,
while the AUC for a useless model is 0.5 [28].
The previous work in this area has primarily involved

using individual datasets to compare modeling strate-
gies. Biesheuvel et al. compared the baseline-category
logit model to the sequential approach and found fairly
similar AUCs for both strategies [14]. Roukema et al. com-
pared the baseline-category logit model, the sequential
approach, and the each level vs. others strategy [13]. They
found similar discriminatory power for all three strate-
gies, though they employed variable selection procedures
for all of the models, making comparisons difficult [13].
Harrell et al. note that models can exhibit lack of fit and
yet still provide quite accurate predicted probabilities [29],
which may explain why several studies have found simi-
lar results in terms of the AUC when comparing different
modeling approaches. In particular, it may be the case that
a givenmodel fits well for some predictors and does not fit
as well for others, but when the coefficient estimates are
combined to calculate predicted probabilities, the result is
a fairly accurate estimate.

Combination selection
Often, a number of candidate biomarker combinations are
available, and some form of selection is required. When
the goal is to use a biomarker combination for risk predic-
tion, it seems appropriate to select combinations based on
predictive capacity. For a binary outcome, one possibility
is to use the AUC (e.g., [30]). That is, the AUC for each
candidate combination is estimated, and the combination
with the highest AUC is chosen.
Two challenges arise in utilizing this approach. The

first is that when the same data are used to construct a
biomarker combination and estimate the AUC (or other
measure of performance) for that combination, the result-
ing AUC estimate will be optimistic relative to the AUC

for the same fitted combination in independent data; we
refer to this as “resubstitution bias” [31]. Methods such as
bootstrapping can be used to correct the apparent AUC
estimate [19].
An additional challenge applies to selection more gener-

ally. If manymodels are considered and amodel is selected
on the basis of some estimated measure of performance,
that estimated measure of performance will be optimisti-
cally biased even if it is corrected for resubstitution bias;
we refer to this as “model selection bias” [31]. This idea
has been explored in the bioinformatics/machine learn-
ing literature, where estimates of the classification error
rate are often used to select a model. Broadly, it has
been found that the estimated error rate for a model
selected on the basis of its favorable error rate will be
optimistic relative to the same model’s error rate in inde-
pendent data [32–38]. Cawley and Talbot call this issue
“overfitting the model selection criterion” [34]. In gen-
eral, when some form of model selection is done and the
performance of the chosen model is evaluated without
accounting for the selection, that is, treating the selected
model as though it were pre-specified, optimistic bias is
expected [19, 35, 39–41].

Methods
For an outcome D with K levels, “single-level prediction”
relates to predicting D = K . In other words, we are inter-
ested in developing a biomarker combination that can
differentiate D = K from D < K . Thus, we focus on
measures of performance that evaluate the model in this
regard. However, this begs the question of whether the
ordered, multilevel nature of the outcome can be used in
constructing and/or selecting a biomarker combination.

Methods for constructing combinations
We have described several regression-based approaches
to modeling polytomous outcomes. In particular, we can
dichotomize the outcome and/or subset the data and use
one of the four binary strategies, we can treat the outcome
as ordered and use one of the four ordinal approaches,
or we can use the more flexible baseline-category logit
model. Using a binary strategy requires combining several
levels of the outcome together or fitting several models to
subsets of the data. Likewise, the ordinal models restrict
the nature of the relationship between the biomarkers and
the outcome so as to achieve parsimony. The baseline-
category logit model, on the other hand, imposes no such
restrictions and includes all of the data in a single model;
of course, this comes at the cost of having to estimate
additional parameters. We use simulations to evaluate the
impact of these modeling choices on the performance
of the resulting estimated combinations. Our focus in
this investigation is whether more sophisticated model-
ing approaches can offer improvements in performance in
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terms of single-level prediction over the simple approach,
that is, a single binary logistic regression model.
Since we are interested in predicting D = K , we

dichotomized D at k′ = K − 1 in the simple approach
defined in the “Models for binary outcomes” section, giv-
ing logit {P(D ≤ K − 1)}. Furthermore, for the purposes
of predicting D = K , the simple approach and the each
level vs. others strategy are identical, so the latter was
not considered further. Finally, as the baseline-category
logit model is parametrically equivalent to the each level
vs. reference approach defined in the “Models for binary
outcomes” section with reference level k∗ = K and the
former is generally more efficient than the latter, we
did not include the each level vs. reference strategy in
our investigation. Thus, we considered seven different
modeling strategies: the simple approach (“Simple”),
the sequential strategy (“Sequential”), the cumulative
logit model (“CumLogit”), the adjacent-category logit
model (“AdjCatLogit”), the continuation-ratio logit model
(“ContRatLogit”), the stereotype model (“Stereo”), and
the baseline-category logit model (“BaselineCat”).
We considered two broad simulation scenarios. In the

first scenario, the biomarkers were simulated such that
the cumulative logit model with proportional odds did
not hold; in the second scenario, the data were simulated
under the cumulative logit model where the assumption of
proportional odds held. In both scenarios, we considered
two biomarkers, X = (X1,X2). We considered outcomes
with either 3 or 5 levels, that is, K = 3 or K = 5. The com-
binations were constructed using training data with 200,
400, 800, or 1600 observations and evaluated in test data
with 104 observations. The training set sizes reflect sam-
ple sizes often encountered in biomarker studies. We used
large test sets to provide reliable estimates of model per-
formance. We simulated data such that P(D = 1) = 0.1
or 0.5 and P(D = K) = 0.05 or 0.3; when K = 5,
P(D = 2), P(D = 3), and P(D = 4) were equal. Thus,
we considered scenarios where the outcome level K, the
target of prediction, was rare and scenarios where it was
common.
We used each of the modeling strategies to fit a lin-

ear combination of the biomarkers X in the training data,
yielding estimates β̂ . We then applied these estimates to
the test data to determine P̂(D = K |X, β̂). Finally, we
assessed the ability of P̂(D = K |X, β̂) to discriminate
between D = K and D < K in the test data via the AUC.
In the AKI example given above, this is the AUC for severe
AKI vs. no or mild AKI. As we are interested in single-
level prediction, this measure is the most relevant metric
by which to compare the methods.
In the simulations where the cumulative logit

model with proportional odds did not hold (the
first scenario mentioned above), the biomarkers had
conditional bivariate normal distributions. In particular,

for K = 3, we considered (X|D= 1) ∼ N(0,�),
(X|D= 2) ∼N(μ,�), and (X|D= 3) ∼ N(2,�),
and for K = 5, we considered (X|D= 1)∼N(0,�),
(X|D= 2) ∼ N(0.5,�), (X|D= 3) ∼ N(1,�),
(X|D= 4) ∼ N(μ,�), and (X|D= 5) ∼ N(2,�).
We used μ ∈ {−1, 0, 1, 2, 3} and � = 2I2, where I2 is
the two-dimensional identity matrix. Other covariance
matrices (including those with correlation between
the biomarkers and unequal covariance matrices)
were explored; details are given in (Additional file 1:
Section S1.1). The parameter μ determines whether the
biomarker means are ordered by D. For K = 3, when μ is
between 0 and 2, the biomarker means can be ordered
by D. The same is true for K = 5 when μ is between 1
and 2. When the biomarker means were not ordered by
D, we anticipated that some of the ordinal and/or binary
methods would not perform well; these scenarios were
included to investigate situations where the expected
ordering of an outcome is not borne out by the data. We
considered conditional bivariate normal distributions in
these simulations because they yield the baseline-category
logit model.
To evaluate data generated by the cumulative logit

model with proportional odds (second scenario), we
simulated two independent normal biomarkers, both
with mean 1 and variance 0.25. The outcome was
then simulated as a multinomial random variable, where
the success probabilities of the K levels were deter-
mined by αk − β	X such that the cumulative logit
model held. Three sets of coefficients β were considered
(β = (1, 2), (1, 1.5), (1,−1)) and values of αk were cho-
sen such that the desired prevalences (given above) were
achieved in a large dataset. We chose to use normally
distributed biomarkers in this simulation as, in our expe-
rience, many biomarkers are approximately normally dis-
tributed after a log transformation.
The simulations were repeated 1000 times and are

described in Table 1.

Methods for combination selection
As above, we suppose that for an outcomeDwith K levels,
“single-level prediction” relates to predicting D = K .
As with combination construction, the presence of an

ordinal outcome requires that decisions about how to
select a biomarker combination be made. One strategy
is to simply estimate the AUC for D = K vs. D < K
(including correcting this estimate for resubstitution bias
due to any model fitting) and select the combination
with the highest estimated AUC. As discussed above, the
estimated AUC for this selected combination will be opti-
mistically biased relative to the AUC for the same fitted
combination in independent data due to model selection
bias. In other words, because of model selection bias,
the estimated AUC for the selected combination, chosen
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Table 1 Description of simulation scenarios for combination construction

Data-generating model K Training sample size Prevalences Biomarker distributions Parameters

Non-proportional odds 3 200, 400, 800, 1600 P(D = 1) = 0.1, 0.5 (X|D = 1) ∼ N(0, 2I2) μ ∈ {–1, 0,1,2,3}
P(D = K) = 0.05, 0.3 (X|D = 2) ∼ N(μ, 2I2)

(X|D = 3) ∼ N(2, 2I2)

5 200, 400, 800, 1600 P(D = 1) = 0.1, 0.5 (X|D = 1) ∼ N(0, 2I2) μ ∈ {–1, 0,1,2,3}
P(D = K) = 0.05, 0.3 (X|D = 2) ∼ N(0.5, 2I2)

(X|D = 3) ∼ N(1, 2I2)

(X|D = 4) ∼ N(μ, 2I2)

(X|D = 5) ∼ N(2, 2I2)

Proportional odds 3 200, 400, 800, 1600 P(D = 1) = 0.1, 0.5 X1 ∼ N(1, 0.25) (β1,β2) ∈ {(1, 2),
P(D = K) = 0.05, 0.3 X2 ∼ N(1, 0.25) (1, 1.5), (−1, 1)}

5 200, 400, 800, 1600 P(D = 1) = 0.1, 0.5 X1 ∼ N(1, 0.25) (β1,β2) ∈ {(1, 2),
P(D = K) = 0.05, 0.3 X2 ∼ N(1, 0.25) (1, 1.5), (−1, 1)}

When K = 5, P(D = 2) = P(D = 3) = P(D = 4). For the proportional odds data-generating model, logit {P(D ≤ k|X1, X2)} = αk + β1X1 + β2X2. I2 is the two-dimensional
identity matrix

precisely because of its high estimated AUC, will be opti-
mistically biased compared to the performance of this
fitted combination in external data. We propose an alter-
native strategy where combination selection is done on the
basis of not only the AUC for D = K vs. D < K , but also
the AUC for D = K − 1 vs. D < K − 1, the AUC for
D = K − 2 vs. D < K − 2, and so on.
We anticipate that in some settings, the estimated AUC

for D = K vs. D < K for the combination selected
in this way will be less affected by model selection bias
and so this combination may be preferred. In particular,
if some of the same biomarkers are associated with mul-
tiple levels of the outcome, our proposed method could
offer improvements over the standard approach. Further-
more, we expect our approach to be useful when many
biomarkers have modest associations with the outcome
and the candidate combinations include subsets of these
biomarkers. For example, if two biomarkers have very
strong associations with D = K vs. D < K (i.e., the
biomarkers for D = K are very different from those for
D < K ) and the remainder have much weaker associ-
ations, if we consider all biomarker pairs, the AUC for
D = K vs. D < K for the pair consisting of the two
strongly associated biomarkers is expected to be much
larger than this AUC for the other combinations and it
is unlikely this difference is due entirely to model selec-
tion bias. Thus, in this scenario, the “standard” approach
of selecting a combination on the basis of the estimated
AUC for D = K vs. D < K would be expected to yield
the best combination in terms of the true AUC for D = K
vs. D < K .
More precisely, for K = 3, we define our algo-

rithm (including constructing combinations and estimat-
ing their performance) as follows.

(1) In the training data, dichotomize D at D = 3 vs.
D < 3 and construct all candidate biomarker
combinations using binary logistic regression. That
is, to construct a candidate combination involving
biomarkers X, fit logit {P(D = 3|X = x)} = θ0 + θ	x
in the training data.

(2) Based on the fitted combinations from (1), e.g.,
θ̂0 + θ̂

	
x, estimate (i) the AUC for D = 3 vs. D < 3

and (ii) the AUC for D = 2 vs. D = 1 in the training
data.

(3) Generate B bootstrap samples from the training data.

(a) In each bootstrap sample, dichotomize D at
D = 3 vs. D < 3 and construct all candidate
biomarker combinations using binary logistic
regression.

(b) For each of the fitted combinations from (a),
estimate (i) the AUC for D = 3 vs. D < 3 and
(ii) the AUC for D = 2 vs. D = 1 in both the
bootstrap sample and the training data.

(c) Estimate the resubstitution bias as the average
difference between the AUC in the bootstrap
sample and the AUC in the training data
across the B samples.

(4) Correct the estimated AUCs from (2) using the
estimated bias from (3c).

(5) Determine the ranks for each of the two sets of
corrected AUCs from (4) across all fitted biomarker
combinations. The “standard” approach involves
choosing the combination with the best AUC for
D = 3 vs. D < 3. The “new” approach involves
choosing the combination with the best sum of ranks
for the two AUCs.
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(6) Apply the two chosen combinations to independent
test data and estimate the AUC for D = 3 vs. D < 3
for each of the two selected combinations from (5).
The estimated model selection bias is the difference
between the AUCs in the test data and the AUCs
from (4).

In practice, test data may not be available, so it may not be
possible to complete step (6). An R package including code
to implement this method, multiselect, is available on
CRAN.
We used simulations to investigate the potential bene-

fits of the proposed method. We considered five examples
as a proof of concept; these are not intended to be exhaus-
tive. In the first two examples, the cumulative logit model
with proportional odds held, while in the other three, it
did not. Throughout the simulations, K = 3, there were
p = 30 biomarkers, andwe considered the set of candidate
combinations to be all possible pairs of these biomark-
ers, constructed via binary logistic regression. We used
B = 50 bootstrap replicates, a training set of 400 observa-
tions, and a test set of 104 observations. We repeated the
simulations 500 times. Our choice of p represents a study
with a modest, but not large, number of biomarkers. As
with the combination construction simulations, we chose
a training set size similar to what might be encountered in
a cohort study and a test set size that would yield reliable
AUC estimates. We chose B = 50 to provide computa-
tional efficiency without sacrificing performance. In these
simulations, we considered all biomarker pairs to be can-
didate combinations. However, the number of biomarkers
to be selected may not be fixed in practice. Our method
is expected to would work equally well if the set of candi-
date combinations was all combinations of, say, between
two and five biomarkers.
In Example 1, we had X ∼ N(1, 2�), where X was a vec-

tor of dimension 30 and � was a 30× 30 matrix where the
diagonal elements were 1 and the off-diagonal elements
were 0.3. The linear predictor was β	X, where β1 = 1,
β2 = 2,β3 = . . . = β16 = 0.5,β17 = . . . = β30 = 0.1.
The outcome was simulated under the cumulative logit
model such that P(D = 1) = 0.6, P(D = 2) = 0.3, and
P(D = 3) = 0.1 in a large dataset. Example 2 was iden-
tical to Example 1, except that P(D = 2) = 0.335 and
P(D = 3) = 0.065.
In Example 3, we had P(D = 1) = 0.6, P(D = 2) =

0.335, and P(D = 3) = 0.065. Additionally, (X|D = 1) ∼
N(0, 2�), (X|D = 2) ∼ N(β(2), 2�), and (X|D = 3) ∼
N(β(3), 2�) where X was a vector of dimension 30, � was
as defined above for Example 1, and β

(2)
1 = 1.5,β(2)

2 = 1,
β

(2)
3 = . . . = β

(2)
16 = 0.5,β(2)

17 = . . . = β
(2)
30 = 0.1,β(3)

1 =
β

(3)
2 = 2,β(3)

3 = . . . = β
(3)
16 = 0.8, and β

(3)
17 = . . . = β

(3)
30 =

0.1. Example 4 was identical to Example 3, except that
β

(2)
1 = 1 and β

(3)
17 = . . . = β

(3)
30 = 0.2. Finally, Example 5

was identical to Example 3, except that β
(2)
1 = 1, β(2)

17 =
. . . = β

(2)
30 = 0, and β

(3)
17 = . . . = β

(3)
30 = 0.2.

These examples reflect a range of scenarios, including
situations where D = 3 is common and situations where
it is relatively rare. The biomarkers in these examples
are moderately correlated, as might be expected in prac-
tice. We considered scenarios where two biomarkers had
stronger effects onD and the remaining biomarkers either
hadmoremodest effects or were not associated with some
levels ofD. In Examples 1 and 2, “stronger effects” mean β

values farther from zero, which translate into odds ratios
(where the odds correspond to P(D ≤ k)/P(D > k))
that are farther from one. For Examples 3–5, “stronger
effects” mean β(k) farther from zero, which translate into
biomarker means for D = k that are more different from
those for D = 1.

Results
Results for constructing combinations
First we consider the scenario where the cumulative logit
model with proportional odds did not hold. We present
the results for a training set size of 400; the results for
the other sample sizes were similar. Here, we focus on the
results for P(D = K) = 0.05 and provide the full results in
(Additional file 1: Section S1.1).
Table 2 presents the results for K = 3 and Table 3

presents the results for K = 5. We see that when μ = −1,
μ = 0, or μ = 1, the simple approach was compara-
ble to or better than the other approaches. When μ = 2,
the simple approach did slightly worse than some of the
ordinal approaches, particularly for K = 3. For μ = 3,
the sequential approach, the stereotype model, and/or the
baseline-category logit model offered some gains over the
simple approach. In sum, when the cumulative logit model
with proportional odds did not hold but there was some
ordering in the outcome by the biomarkers (that is, μ <

2), the simple approach did well, but when μ ≥ 2, some
of the alternative approaches demonstrated improved
performance. This is expected, since when μ < 2,
the simple approach is able to separate D < K from
D = K , and so performs well. Furthermore, as indi-
cated above, it is not surprising that when μ was extreme,
many of the ordinal and binary approaches did not
perform well.
While our main goal was to see if another regres-

sion method could yield improvements over the simple
approach, it is instructive to note some of the patterns
for the other methods. For instance, when K = 3 and
μ = 3, the cumulative logit, adjacent-category logit, and
continuation-ratio logit models performed poorly relative
to some of the other methods. This is not surprising as
these methods are most appropriate when there is some
ordering of the outcome, but when μ = 3, the mean
of the biomarkers for D = 2 exceeds the mean of the
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biomarkers for D = 3. This had more of an impact
for K = 3 than for K = 5, since for K = 5, four
out of the five outcome levels were still ordered and so
there seems to have been less of an effect on the models’
performance.
Similarly, when K = 3, P(D = 1) = 0.5, and

μ = –1, the cumulative logit, adjacent-category logit,
and continuation-ratio logit models again did poorly com-
pared to some of the alternatives. However, we did not see
this when P(D = 1) = 0.1. This is because when P(D =
1) = 0.5, P(D = 2) = 0.45, but when P(D = 1) = 0.1,
P(D = 2) = 0.85. Thus, when P(D = 1) = 0.1, the D = 2
level essentially overwhelmed D = 1, so the fact that
D = 2 is “out of order” had less of an impact on model fit-
ting. On the other hand, when P(D = 1) = 0.5 and P(D =
2) = 0.45, both D = 1 and D = 2, and their lack of order-
ing relative to D = 3, influenced model fitting. Likewise,
when K = 5, P(D = 1) = 0.1, and μ = –1, the cumulative
logit, adjacent-category logit, and continuation-ratio logit
models did not perform well. A similar argument applies
here, but in reverse: when P(D = 1) = 0.1, P(D = 2) =
P(D = 3) = P(D = 4) ≈ 0.28, and when P(D = 1) = 0.5,
P(D = 2) = P(D = 3) = P(D = 4) = 0.15. Thus,
when P(D = 1) = 0.5, the “out of order” level, D = 4,
was overwhelmed by the other (ordered) levels, but when
P(D = 1) = 0.1, P(D = 4) is considerably higher, and the
fact that D = 4 is “out of order” had a larger influence on
model fitting.
Finally, we note that in these situations, where

the cumulative logit, adjacent-category logit, and
continuation-ratio logit models performed poorly,
the other ordinal approach, the stereotype model,
offered enough flexibility to provide models with good
performance.
When the cumulative logit model with proportional

odds held, the performance was comparable across the
approaches considered for a training set size of 400
(Additional file 1: Section S1.2); similar patterns were
seen for other sample sizes. Thus, even when the data
were generated by an ordinal model, the simple approach
did well in terms of the predictive capacity of the fitted
combinations.
For small to moderate sample sizes, several of the

approaches had issues with convergence. When the train-
ing set had 200 observations, the simple approach failed
to converge in up to 3.1% of simulations, the sequential
approach failed to converge in up to 38% of simulations,
the stereotype model failed to converge in up to 2.6% of
simulations, and the baseline-category logit model failed
to converge in up to 1.4% of simulations. For training data
with 400 observations, the sequential approach failed to
converge in up to 7% of simulations. The proportion of
convergence failures was below 0.2% for all methods for
larger sample sizes.

Results for combination selection
Table 4 presents the results for Examples 1 and 4 for
the proposed combination selection method. The results
for Examples 2, 3, and 5 show similar patterns; the full
results are presented in (Additional file 1: Section S2). The
results in Table 4 demonstrate some benefit to using the
additional information available in the ordinal outcome to
select a biomarker combination for single-level prediction,
both in terms of the degree of model selection bias and the
ability of the chosen combination to discriminate D = 3
from D < 3 in independent test data.
In all of the examples considered, the first two biomark-

ers (X1 and X2) had larger coefficients than the other
biomarkers. This suggests that the pair (X1,X2) may offer
better performance than the other candidate biomarker
pairs. To explore this, we investigated how often this
pair was chosen by each method. In Example 1, the pair
(X1,X2) was chosen in 19.2% of simulations by the stan-
dard approach and in 41.4% of simulations by the new
approach. For Example 2, these numbers were 13.4 and
34.8%, respectively. In Example 3, they were 27.4 and
57.6%, and for Example 4, they were 44 and 82.4%. Finally,
for Example 5, they were 50.2 and 79.8%.
There were no issues with the logistic regression model

failing to converge in the Example 1 simulations, eight
simulations (out of 500) had convergence issues in Exam-
ple 2, and one simulation had convergence issues in each
of Examples 3, 4, and 5.

Application to TRIBE-AKI
We applied our proposed method for combination selec-
tion to data from the TRIBE-AKI study. As noted above,
the outcome in this study, AKI, is an ordinal outcome as
patients may be diagnosed with no, mild, or severe AKI.
Furthermore, of the biomarkers measured in the study, it
is believed that only a subset are likely to be useful for
early diagnosis. Thus, we considered all possible pairs of
14 biomarkers measured in the study.
In the TRIBE-AKI study, severe AKI is defined as a dou-

bling of serum creatinine over preoperative levels or the
need for dialysis during the hospital stay and mild AKI
is defined as an increase in serum creatinine of 50%. The

Table 4 Results for the proposed combination selection method
for Examples 1 and 4

Method Bias AUC

Example 1 Standard 0.030 (0.020, 0.044) 0.911 (0.905, 0.917)

New 0.014 (0.005, 0.026) 0.916 (0.911, 0.923)

Example 4 Standard 0.042 (0.012, 0.068) 0.794 (0.777, 0.834)

New 0.010 (-0.018, 0.037) 0.831 (0.822, 0.838)

The table gives the median (interquartile range) of the estimated model selection
bias and the AUC for D = 3 vs. D < 3 in test data for the combinations selected by
the two approaches
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TRIBE-AKI study is a multicenter study, but we restricted
attention to the largest center in order to avoid issues
related to center differences. We used the biomarker mea-
surements taken immediately after surgery and removed
observations missing any of these measurements. This left
465 observations (61 with mild AKI and 30 with severe
AKI). We also log-transformed the biomarker measure-
ments. As in the simulations, we applied our proposed
method with 50 bootstrap replications.
The results for the ten best combinations in terms

of the AUC for severe vs. no/mild AKI are given in
Table 5. The combination with the highest AUC for
severe vs. no/mild AKI, which would be selected by the
standard approach, includes urine interleukin-18 (IL-18)
and plasma N-terminal-pro-B-type natriuretic peptide
(NT-proBNP). The estimated AUCs (corrected for resub-
stitution bias) for this combination were 0.8575 for severe
vs. no/mild AKI and 0.6125 for mild vs. no AKI. The com-
bination with the highest combined rank for the AUC
for severe vs. no/mild AKI and the AUC for mild vs. no
AKI, which would be selected by the proposed method,
included plasma heart-type fatty acid binding protein (h-
FABP) and plasma interleukin-6 (IL-6). The estimated
AUCs (corrected for resubstitution bias) for this com-
bination were 0.8365 for severe vs. no/mild AKI and
0.6757 for mild vs. no AKI. Thus, the AUC for severe
vs. no/mild AKI for this second combination is slightly
lower, but the AUC for mild vs. no AKI is substantially
higher. It may be reasonable to expect that the estimated
AUC for severe vs. no/mild AKI for the second combi-
nation (0.8365) is less affected by model selection bias
than is the estimated AUC for severe vs. no/mild AKI
for the first combination (0.8575), which may motivate
choosing to validate the second combination instead of
the first.

Table 5 The ten best biomarker pairs in the TRIBE-AKI study

Biomarkers AUC (Severe) AUC (Mild)

Urine IL-18 Plasma NT-proBNP 0.8575 0.6125

Plasma h-FABP Urine IL-18 0.8495 0.6394

Plasma h-FABP Plasma BNP 0.8464 0.6403

Plasma h-FABP Plasma NT-proBNP 0.8459 0.6329

Urine IL-18 Plasma BNP 0.8414 0.6168

Plasma h-FABP Urine KIM-1 0.8410 0.6400

Plasma h-FABP Plasma IL-6 0.8365 0.6757

Plasma h-FABP Plasma IL-10 0.8342 0.6405

Plasma h-FABP Plasma CKMB 0.8271 0.6558

Urine KIM-1 Plasma TNTHS 0.8253 0.6005

The table presents the ten pairs with the highest estimated AUC for severe vs.
no/mild AKI. The estimated AUCs for severe vs. no/mild AKI and for mild vs. no AKI
are presented. Both estimates are corrected for optimism due to resubstitution bias

Discussion
When there is interest in developing biomarker combi-
nations for single-level prediction of an ordinal outcome,
common practice is to dichotomize the outcome for com-
bination construction and selection. We have considered
whether the information in an ordinal outcome can be
leveraged in the development of biomarker combinations
for single-level prediction.
In the context of constructing biomarker combinations,

we used simulations to compare seven regression-
based approaches: two binary approaches, four ordinal
approaches, and one nominal approach. We considered
a variety of data-generating scenarios and found that
when some separation in the biomarker distributions
between D = K and D < K existed (i.e., μ < 2 in our
first simulation scenario) or when the cumulative logit
model with proportional odds held, the simple approach
based on dichotomizing the outcome tended to work well
in terms of the ability of the resulting combinations to
predict D = K .
We have also proposed a method that utilizes the ordi-

nal nature of the outcome in selecting a biomarker combi-
nation, as opposed to selecting a combination based solely
on its ability to predict the targeted level. Simulations pro-
vide evidence that use of the proposed method may result
in less model selection bias and could lead to selecting
combinations with greater predictive capacity. We applied
this method to data from the TRIBE-AKI study, where we
demonstrated how the method could be used to select a
combination in practice. This approach is expected to be
most useful when there is some ordering in the biomark-
ers by the levels of D. It is important to study this method
further in order to fully elucidate the settings in which it
could be beneficial.
In using this method for selection, it is generally infor-

mative to look at the results for the candidate combina-
tions, as we have done in Table 5 for the top ten pairs in
the TRIBE-AKI study. If there is a clear “winner” in terms
of the AUC for D = 3 vs. D < 3, that is, if this AUC
is substantially higher for one candidate combination, it
is probably reasonable to select that combination, regard-
less of the AUC for D = 2 vs. D = 1. This is because it
is unlikely that such a markedly higher AUC estimate is
due to model selection bias. On the other hand, if several
combinations have fairly similar performance in terms of
the AUC for D = 3 vs. D < 3, it may be worth using
the AUC for D = 2 vs. D = 1 to aid in selection. One
possible extension of this method could involve using a
weighted average of ranks for the two AUCs, rather than
the sum; additionally, using a weighted average of the AUC
values themselves (as opposed to their ranks) could be
considered.
The proposed method for selection is most appropri-

ate when a modest number of biomarkers is available.
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When the number of candidate biomarkers is very large,
some form of pre-selection may be required, for example,
using p-values or some other measure of the univariate
association between a biomarker and the outcome. How-
ever, univariate measures of association may not reflect
a biomarker’s potential to improve prediction when com-
bined with other predictors [42], so pre-selection is best
avoided when feasible [43].
In some settings, a polytomous outcome arises from

the categorization of a continuous outcome; in such
instances, methods for continuous data may yield better
performance. Our work is primarily concerned with
situations where the outcome is not based on the cate-
gorization of a continuous variable, such as the AKI and
cancer grade examples.
Several measures of performance for polytomous out-

comes have been proposed, including the polytomous
discrimination index [44], the ordinal c-index [45], and the
hypervolume under the manifold [46], each of which gen-
eralizes the AUC from binary to polytomous outcomes.
These measures summarize the ability of a combination to
predict all levels of the outcome, and so are not well-suited
to the work discussed here, which pertains to the situation
where predicting a particular level of the outcome is the
primary goal. Given this goal, we examined the AUC for
D = K vs.D < K in constructing combinations. Addition-
ally, while our selection algorithm uses information from
multiple AUCs, we also recommend considering the mag-
nitude of the AUC for D = K vs. D < K in selecting a
combination. As noted above, a combination with a much
higher AUC for D = K vs. D < K (relative to the other
candidate combinations) should be preferred regardless
of its ability to predict the other levels. Finally, we note
that we have focused on the AUC as a measure of perfor-
mance and a tool for combination selection. Alternative
measures of discrimination may also be useful and could
yield different results.

Conclusions
When an ordinal outcome is available and there is interest
in using biomarker combinations to predict a single level
of the outcome, the common approach of dichotomiz-
ing the outcome to construct and/or select a combination
necessarily discards some information. We have consid-
ered the utility of leveraging this information to advance
the goal of single-level prediction.

Additional file

Additional file 1: An additional file (“Additional File 1.pdf”) contains
Sections S1 and S2. Section S1 contains results for simulations comparing
methods for constructing combinations when the cumulative logit model
with proportional odds did not hold (Section S1.1) and when the
cumulative logit model with proportional odds held (Section S1.2).
Section S2 contains results for simulations comparing methods for
combination selection. (PDF 3152 kb)
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