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Abstract

Background: Prognostic models incorporating survival analysis predict the risk (i.e., probability) of experiencing a
future event over a specific time period. In 2002, Royston and Parmar described a type of flexible parametric
survival model called the Royston-Parmar model in Statistics in Medicine, a model which fits a restricted cubic spline
to flexibly model the baseline log cumulative hazard on the proportional hazards scale. This feature permits
absolute measures of effect (e.g., hazard rates) to be estimated at all time points, an important feature when using
the model. The Royston-Parmar model can also incorporate time-dependent effects and be used on different scales
(e.g., proportional odds, probit). These features make the Royston-Parmar model attractive for prediction, yet their
current uptake for prognostic modeling is unknown. Thus, the objectives were to conduct a scoping review of how
the Royston-Parmar model has been applied to prognostic models in health research, to raise awareness of the
model, to identify gaps in current reporting, and to offer model building considerations and reporting suggestions
for other researchers.

Methods: Five electronic databases and gray literature indexed in web sources from 2001 to 2016 were searched
to identify articles for inclusion in the scoping review. Two reviewers independently screened 1429 articles, and
after applying exclusion criteria through a two-step screening process, data from 12 studies were abstracted.

Results: Since 2001, only 12 studies were identified that used the Royston-Parmar model in some capacity for
prognostic modeling, 10 of which used the model as the basis for their prognostic model. The restricted cubic
spline varied across studies in the number of interior knots (range 1 to 6), and only three studies reported knot
placement. Three studies provided details about the baseline function, with two studies using a figure and the third
providing coefficients. However, no studies provided adequate information on their restricted cubic spline to permit
others to validate or completely use the model.

Conclusions: Despite the advantages of the Royston-Parmar model for prognostic models, they are not widely
used in health research. Better reporting of details about the restricted cubic spline is needed, so the prognostic
model can be used and validated by others.

Registration: The protocol was registered with Open Science Framework (https://osf.io/r3232/).
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Background
Prediction models are used in health research to relate
pieces of information (i.e., predictors) to identify the
probability of a state (i.e., outcome), such as whether a
specific disease or condition currently exists, which is
known as diagnosis, or the probability the state will
occur in the future, which is known as prognosis [1, 2].
In health research, prognostic models are used for pre-
dicting the risk of the future event (i.e., probability), such
as the onset of disease (i.e., incidence), disease progres-
sion or mortality over a specified time period in
individuals, or subgroups of the population [1]. While
prognostic models can be constructed using various
techniques (e.g., neural networks, classification trees),
regression modeling is the most commonly used tech-
nique to develop, validate, and update prediction models
in health research [3]. When regression modeling is used
for prognostic models, survival analysis is a common
regression model type because it accounts for the
relationship between the predictor(s) and the outcome(s)
and the time until the occurrence of the outcome(s) [4, 5].
While predictions are often presented for a specific time
point, prognostic models based on survival analysis enable
predictions to be a function of study follow-up time,
which increases the application of the model for different
contexts. Examples of prognostic models that use regres-
sion modeling for individual risk prediction are the
Framingham risk score and the Gail model [6, 7], which
measure the future risk of cardiovascular disease and
breast cancer development, respectively. Prognostic
models can also be used for predicting the risk of disease
at the population level [8], one example being a tool that
predicts the population risk for diabetes to aid health
services planning and delivery [9].
For some prognostic models, the framework for

survival analysis is based on the Cox proportional
hazards (PH) model [10]. First described in 1972 [11],
the Cox PH model is widely used due to its ease of
calculating the relative effects of hazards between groups
(i.e., hazard ratio (HR)) without needing to estimate the
baseline hazard function. The Cox PH model treats the
baseline hazard function as a nuisance parameter, so the
partial likelihood function is maximized, which permits
estimation of the regression parameters, but not the
baseline hazard function. As a result, absolute measures
of effects (e.g., survival probability, hazard rates) can
only be estimated at the event times, which results in a
step function where the estimate at one event is held
constant and carried forward until the time of the next
event. Two common semi-parametric methods to esti-
mate the survival function post hoc from the Cox PH
model are the Breslow estimator, which is a generalization
of the Nelson-Aalen estimator of the cumulative hazard
[12], and the Kalbfleisch-Prentice estimator, which is an

extension of the Kaplan-Meier estimator of survival [13].
The distance between steps can be reduced by using data
with large sample sizes and many observed events across
the study period, which permits risk prediction at many
time points. Another solution is to use a smoothing
method (e.g., locally weighted smoothing) on the survival
curves. However, the optimal approach for prognostic
models would be to utilize the baseline hazard function
for the continuous mathematical estimation of the abso-
lute measures of effect.
Parametric survival models permit direct estimation of

absolute measures of effect because an underlying distri-
bution is specified mathematically. Parametric survival
models specify the baseline hazard (h0(t)), and a com-
mon specification is the Weibull distribution, which is a
function of a scale parameter (λ), a shape parameter (γ),
and time (t), defined as:

h0 tð Þ ¼ λγtγ−1; ð1Þ

where the scale and shape parameters must both be
greater than 0. The shape parameter defines the shape of
the Weibull function, which generally is a monotonically
increasing (γ > 1) or decreasing (γ < 1) hazard. The ex-
ception is when the shape parameter equals one (γ = 1),
in which case the baseline hazard is reduced to an
exponential distribution with a constant hazard. In
situations where the underlying hazard is monotonic-
ally increasing, monotonically decreasing, or constant,
the Weibull distribution can provide accurate predic-
tions for absolute measures of effect [9]. However,
when the hazard function has a more complex shape
(e.g., bathtub shape, J shape), specifying a Weibull
distribution will lead to inaccurate predictions and/or
model convergence issues.
In 2002, Royston and Parmar published a paper in

Statistics in Medicine describing the Royston-Parmar
model, a type of flexible parametric survival model
[14]. This model features a restricted cubic spline,
which solves issues encountered when using the Cox
PH and parametric PH survival models. The restricted
cubic spline permits estimation of a continuous func-
tion instead of a step function. As well, more com-
plex shapes can be modeled, which avoid inaccurate
predictions and model convergence issues. In the PH
context, the Royston-Parmar model can be thought of
as a generalization of the Weibull distribution where
a general function for the baseline log cumulative
hazard function on the log timescale is modeled
instead of a linear function (as is the case when a
Weibull distribution is pre-specified). The log cumula-
tive hazard function on the log timescale for a
Weibull distribution is:
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ln H tð Þjxið Þ ¼ ln λð Þ þ γ ln tð Þ þ βxi; ð2Þ
where the first two terms—ln(λ) and γ ln(t)—describe
the linear baseline function with respect to log time, and
the third term—βxi—represents a vector of covariates,
each weighted by a coefficient. This linear baseline func-
tion could be generalized and re-written as:

ln H tð Þjxið Þ ¼ ln H0 tð Þ½ � þ βxi; ð3Þ
where ln[H0(t)] represents a general baseline log cumu-
lative hazard function. Royston and Parmar proposed to
model the general baseline log cumulative hazard func-
tion on the log timescale as a restricted cubic spline. A
spline is a piecewise function in which the boundaries of
each sub-function are defined by knots. The knots at
either end of the spline are called boundary knots, and
all knots between the boundary knots are called interior
(aka internal) knots. Constraints are used to ensure the
sub-functions are connected at the knots in a smoothed
fashion so that the spline function, its first derivative,
and its second derivative are continuous. A cubic spline
is a spline in which all sub-functions are cubic curves. A
restricted cubic spline (aka natural cubic spline) is a
cubic spline with an additional restriction where the first
and last sub-functions beyond the boundary knots are
linear functions instead of cubic functions. A restricted
cubic spline can be expressed as [15]:

s xð Þ ¼ η0 þ η1z1 þ η2z2 þ…þ ηK−1zK−1K ð4Þ
where K is the number of knots, zi are derived variables,
and ηi are the coefficients for the derived variables. The
derived variables can be calculated as:

z1 ¼ x ð5Þ

z j ¼ x−k j
� �3

þ−ϕ j x−k1ð Þ3þ− 1−ϕ j

� �
x−k j
� �3

þ for j

¼ 2;…;K−1: ð6Þ
where ki represents the position of the ith knot and
ϕj = (kK − kj)/(kK − k1). It is possible for the derived
variables to be correlated, so the derived variables can be
orthogonalized using the Gram-Schmidt orthogonaliza-
tion [16]. When the intercept is not considered, the
degrees of freedom are equal to the number of interior
knots plus one. The Royston-Parmar model under a PH
context can be expressed mathematically as:

ln H tð Þjxið Þ ¼ s ln tð Þjη; k0ð Þ þ βxi: ð7Þ
where s(ln(t)| η, k0) is a restricted cubic spline that is a
function of the coefficients of the derived variables (η)
and the number of knots (k0) (Eq. 4). The restricted
cubic spline permits baseline log cumulative hazard
functions with complex shapes to be fit, including func-
tions with multiple increasing and/or decreasing regions.

The boundary knots are placed at the extreme uncen-
sored survival times, which improve the stability of the
fitted function [14, 17]. Specifying the number and
placement of the interior knots defines the shape of the
baseline log cumulative hazard function. More interior
knots increase the flexibility of the fitted function at the
risk of overfitting the model; conversely, fewer interior
knots decrease the flexibility of the fitted function at the
risk of underfitting the model. When no interior knots
are specified, the restricted cubic spline reduces to a
linear function (i.e., the Weibull distribution). Knot
placement is also important. Interior knots spaced fur-
ther apart will capture the overall shape of the function
at the risk of missing the nuances of the function; con-
versely, interior knots spaced closer together will capture
more nuances at the risk of modeling random noise.
While previous work has shown the number and place-
ment of knots to be robust for modeling the baseline
function [14, 18–20], varying the number and placement
of knots in a sensitivity analysis helps ensure the base-
line function is well specified. Sensitivity analysis can
also be performed to examine the fit of the restricted
cubic spline on other scales (i.e., the proportional odds
(PO) scale as an extension for the log-logistic distribu-
tion, or the probit scale as an extension for the log-
normal distribution) because the Royston-Parmar model
was developed within the Aranda-Ordaz family of link
functions [14]. Since 2002, Royston-Parmar models have
been extended to relative survival models in 2007 [19].
In the context of mortality, relative survival models
compare the observed all-cause survival for a group of
individuals (e.g., cancer patients) (S(t)) relative to the
expected survival of a comparable group representing
the general population (S*(t)) to obtain an estimate of
relative survival (R(t)). The corresponding hazard func-
tion describes the excess hazard rate associated with the
group of interest (δ(t)) as the difference between the
observed hazard rate for the group of interest (h(t)) and
the expected hazard for the general population (h*(t)).

R tð Þ ¼ S tð Þ
S� tð Þ ð8Þ

δ tð Þ ¼ h tð Þ−h� tð Þ ð9Þ
Relative survival indicates how much worse (or better)

the survival is for the group of interest relative to the gen-
eral population and is used when the cause of death is
inaccurate or unknown. Recently, the Royston-Parmar
model has been extended to the cure model (2011) [17, 21],
a relative survival model where the excess hazard becomes
zero over time (δ(t) = 0) for individuals who are still alive;
cause-specific competing risks where individuals are at-risk
for more than one outcome, and the occurrence of one out-
come prevents or alters the probability of another outcome
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occurring (2013) [22]; and joint modeling of longitudinal
and survival data (2011) [23].
In the PH context, Royston-Parmar model can be

thought of as a hybrid approach of the parametric
survival model and the Cox PH model. Modeling the
baseline log cumulative hazard function as a restricted
cubic spline is similar to the parametric survival model,
but the complexities of the baseline function can be
modeled without sacrificing model fit. The restricted
cubic spline can also be reported mathematically as a
function of derived variables and their coefficients and
the number of knots (Eq. 4). This expression permits the
continuous estimation absolute and relative measures of
effect and their uncertainty, which is an advantage ver-
sus the Cox PH model combined with an estimator.
Continuous estimation of absolute measures of effect
(e.g., hazard rates, differences in survival probability,
standardized survival function, population-averaged sur-
vival function) increases the applicability the prognostic
model because time-specific predictions can be made by
the user. Despite these advantages of the Royston-
Parmar over the Cox PH model (with an estimator) and
parametric survival models for prognostic modeling, the
use of the model in health research for prognostic
models is unknown. Thus, a scoping review of the appli-
cation of the Royston-Parmar model for prognostic
models in health research was conducted to document
its current use, to raise awareness of the model, to iden-
tify gaps in current reporting, and to offer recommenda-
tions for future reporting.

Methods
Scoping review framework
To achieve our objective of documenting the current
use of the Royston-Parmar model for prognostic models
in health research, we chose the scoping review frame-
work proposed by Arksey and O’Malley and refined by
the Joanna Briggs Institute [24, 25]. A scoping review is
a knowledge synthesis strategy that provides a broad
overview of a topic by mapping the breadth and depth
of its evidence. Like a systematic review, a scoping
review uses a systematic, predefined search strategy to
comprehensively search the literature; however, scoping
reviews seldom critically appraise the quality of the
literature using a scoring instrument or include a
meta-analysis.

Study question
The study question follows the Population, Concept and
Context elements which have a broader scope and aligns
better with a scoping review than the traditional Population,
Intervention, Comparison, Outcome elements used for
systematic reviews [25]. The specific question of this study
was “To date, how have Royston-Parmar models been

applied for prognostic modeling in health research?”. The
scoping review protocol was registered with Open Science
Framework (https://osf.io/r3232/).

Search strategy
A search strategy consisting of three approaches—indexed
databases, gray literature, and manual searches—was
undertaken (specific details provided in Additional file 1:
Appendix 1). The first approach was a comprehensive
search of published literature indexed in six indexed, elec-
tronic databases (MEDLINE, EMBASE, CINAHL, Scopus,
Web of Science, and the Cochrane Library). With the
guidance of a librarian, a search string consisting of sub-
ject headings and keywords related to the research ques-
tion was created. Specifically, subject headings for survival
analysis and health research (e.g., epidemiology, medicine,
public health, health services research) were identified and
combined with keywords for the Royston-Parmar model,
the model’s features (e.g., restricted cubic splines), and
statistical software commands used for estimating Roy-
ston-Parmar models (e.g., Stata sptm2 command).
Where appropriate, plurality, alternative spelling, and
synonyms (e.g., flexible parametric model) were used.
The search string was tailored to each electronic
database’s syntax.
The second approach searched the gray literature

indexed in web sources with limits that restricted the
search to relevant hits. Search strings related to the
Royston-Parmar model and flexible parametric survival
models applied in Google Scholar and limited to the first
200 hits. Additionally, web searches using the Google
search engine were performed and limited to the first 30
search results—one for the Royston-Parmar model and a
second for flexible parametric survival models. If the
result was a web page instead of a publication, the
result was explored for publications and/or publica-
tion lists. The cutoff limit was different between the
two searches because the relevancy of the hits varied
by search type. All Google-related searches were con-
ducted on October 26, 2016.
The third approach was manual searches for poten-

tially missing documents. A citation search was used,
which looks for a key article in the reference list of doc-
uments. In this review, a citation search using PubMed
was conducted using selected foundational articles relat-
ing to the creation and methodological development of
the Royston-Parmar model [14, 18–20, 22, 23, 26–29] as
the key articles. Finally, all articles listed on the personal
websites of selected primary authors that published on
the creation and development of the Royston-Parmar
model were also searched (i.e., Paul C. Lambert, Patrick
Royston, and Mahesh K.B. Parmar).
Each approach was restricted to studies involving

human subjects, disseminated in the English language,
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and published from 2001 to 2016. While the seminal art-
icle describing the Royston-Parmar model was published
in 2002 [14], a companion technical article describing
the estimation of the Royston-Parmar model with Stata
was published earlier in 2001 [26].

Study inclusion criteria
This scoping review focused on documents that
described the application of the Royston-Parmar model
in the development and/or validation of a prognostic
model for a health-related outcome. This requirement
led to the exclusion of:

i. Systematic reviews;
ii. Methodology articles where the main aim was to

describe a methodological development related to
the Royston-Parmar model, including articles in
which the methodology was demonstrated using
real-world or simulated data;

iii. Technical reports describing how to model data with
the Royston-Parmar model within statistical software
(e.g., Stata);

iv. Associational studies and description of trend
studies where the main aim was to examine the
association between risk (/protective) factor(s) and
time-to-event outcomes, rather than for risk
prediction.

Articles were also excluded if the outcome was unre-
lated to clinical health, population health, or the social
determinants of health. Articles with only an abstract
(e.g., conference proceedings) were excluded because of
the lack of reported methodological detailed regarding
the Royston-Parmar model. Both univariable and multi-
variable prognostic models were considered.
After combining all documents and removing dupli-

cates using the Mendeley reference management soft-
ware, 1429 articles were eligible for inclusion (Fig. 1).
Exclusion criteria were applied at two levels of assess-
ment: a first screening based on the title and abstract
(1116 articles excluded) followed by a second screening
of the full text for remaining documents (301 excluded).
Both assessments were conducted independently by two
reviewers (KK and RN) and logged into a standardized,
piloted relevance form. Disagreements between the two
reviewers were resolved through discussion against the
inclusion criteria. After the assessments, 12 articles were
eligible for abstraction [30–41].

Data abstraction and synthesis
Data were abstracted using a standardized, piloted
abstraction form. Data were abstracted by one reviewer
and verified by the second reviewer; disagreements were
resolved through discussion. The data were abstracted

and synthesized according to three themes—study
characteristics, specifications of the Royston-Parmar
model, and factors corresponding to the application of
the Royston-Parmar model to prognostic modeling of
health-related outcomes—described briefly below. If the
article described more than one prognostic model
constructed using the Royston-Parmar model, details
from each model were abstracted. The prognostic model
described in most detail was identified as the main prog-
nostic model, and its characteristics are presented with
the other models presented as sensitivity analyses in
relation to the main model.

1. Study characteristics
(a)General study characteristics, such as author, year

of publication, and subject area (e.g., cancer,
cardiovascular, aging); and

(b)Study methods, such as cohort details (e.g., study
location, study setting, study size), prognostic
factors, and outcomes.

2. Royston-Parmar model specifications, such as
number of knots, placement of knots, sensitivity
analysis of the number and placement of knots,
software used, and model extensions (e.g., relative
survival, competing risk);

3. Application of the Royston-Parmar model to
prognostic models of health-related outcomes
(a)Development and validation details, such as

measures of overall performance (e.g., R2),
discrimination (e.g., Harrell’s C statistic),
calibration (e.g., Hosmer-Lemeshow goodness of
fit), and validation (e.g., internal, external
validation);

(b)Results reported from the Royston-Parmar model,
including baseline hazard functions (equation or
figure), hazard rates, survival rates, and cure
proportions;

(c)Sensitivity analysis and comparisons to other
survival analysis methods including goodness of
fit measures (e.g., Akaike information criterion
(AIC)); and

(d)The rationale reported for using a Royston-Parmar
model, including its benefits and limitations.

Results
There were 12 studies that applied the Royston-Parmar
model for the development and/or validation of a prog-
nostic model for health research [30–41]. Ten studies
used the Royston-Parmar model as the main survival
analysis method for their prognostic model [30–35, 37–
39, 41]; the other two studies used it to complement
their Cox PH-based prognostic model approach [36, 40].
In these two studies, the Royston-Parmar model was
used in one instance to depict the unadjusted hazard
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function [40] and in the other to show the adjusted sur-
vival curve [36]. Two of the studies had developers of
the Royston-Parmar model as co-authors [34, 41].

Study characteristics
Table 1 summarizes the study characteristics. All studies
were published from 2012 onwards with the most pub-
lished in 2016 (n = 4). The studies spanned eight coun-
tries with the largest number originating from the UK
(n = 3), the country from where the model originated.
The prognostic models were developed in six subject
areas, with half the studies related to cancer (n = 6).
Most prognostic models used either administrative data
(n = 7) or clinical data (n = 3), with the study setting as
specific as a hospital (n = 4) to as broad as a country (n
= 3) and the sample sizes ranging from 185 to 870,878
individuals. The most common event measured was
mortality (n = 10) and maximum follow-up time ranged
from 0.5 to 21 years. All studies except one used calen-
dar time as the timescale; the other used age.

Royston-Parmar model specifications
Table 2 summarizes the Royston-Parmar model specifi-
cations of included studies. Ten of the 12 studies used
the Royston-Parmar model as the basis for their prog-
nostic model, 4 of which used the model in a relative

survival model, and 2 of which incorporated cure
models; all relative survival models were for cancer stud-
ies. Only one of the 12 studies focused on the improve-
ment in prognosis when biomarkers were added to the
model [37]. Eight of the 12 studies reported the number
of knots. Studies were more likely to specify the number
of knots in terms of degrees of freedom (n = 6) as op-
posed to the number of knots (n = 2). The number of in-
terior knots used in the eight studies ranged from 1 to 6.
Only three of these studies described the placement of
knots, all of which spaced the knots evenly across the
distribution of uncensored log event times. Five of the
12 studies reported conducting sensitivity analyses to
check the number and/or placement of knots using AIC
or Bayesian information criterion (BIC). Interestingly,
four studies incorporated sensitivity analyses that looked
at the fit of the restricted cubic spline on the PO and/or
probit scales. One study compared the fit of the re-
stricted cubic spline on the PO and PH scales and found
that the PO scale led to the best fit. Three studies com-
pared all three scales, and two found the probit scale
provided the best fit while the other found the PH scale
provided the best fit. Nine of the 12 studies used the PH
scale for their Royston-Parmar model. No studies speci-
fied whether they orthogonalized their bases functions.
Eleven studies reported conducting their analysis in

Fig. 1 Flow diagram of studies included for the scoping review
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Stata, five of which reported using the updated com-
mand for Royston-Parmar models, stpm2.

Application of the Royston-Parmar model to prognostic
models of health-related outcomes
Of the ten studies that based their prognostic model on
a Royston-Parmar model, six conducted internal valid-
ation (two used split-sample validation [30, 39], three
used cross-validation [32, 35, 41], and one used boot-
strap validation [38]), and two others conducted geo-
graphical external validation [32, 37]. Overall measures
of performance to account for the variation explained
using R2 was reported in three studies [30, 35, 41].
Discrimination—the ability to distinguish between indi-
viduals with and without the event—was reported in five
studies [30, 32, 37, 39, 41]. The most commonly
reported measure was Harrell’s c statistic (n = 4) [32, 37,
39, 41], a discrimination measure that represents the
probability an individual is correctly identified as having a
longer survival time than another random subject while
considering censoring [42]. One study reported the
Royston and Sauerbrei’s D statistic [41]—the separation
between the survival distributions of two groups
[43]—and one reported discrimination (Yates) slopes
[30]—the separation in average predictions between sub-
jects with and without the event [44]. Calibration—the

agreement between observed outcomes and predic-
tions—was reported in six studies with five studies com-
paring observed results with predicted results using
Kaplan-Meier plots [30, 32, 37, 39, 41]. One study com-
pared predicted estimates to life table estimates [34], an-
other study conducted Hosmer-Lemeshow tests [37], and
a third study calculated scaled Brier scores [30]. In the one
study that examined the prognostic value of biomarkers
[37], category-free net reclassification improvement and
integrated discrimination improvement were used, which
are two measures that examine how individuals are reclas-
sified based on the addition of a new prognostic factor. All
measures of performance used in the studies were the
same as the measures of performance used in other sur-
vival analysis models (i.e., they did not need to be adapted
to the flexible parametric survival model).
Across studies, 15 different estimates were reported

from the prognostic models (Table 3). The most common
estimates reported were survival-related estimates (n = 9)
(i.e., survival, relative survival, net survival) and hazard
rate-related estimates (n = 5) (i.e., hazard rate, excess
hazard rate). Only three studies reported information
related to a baseline function: two provided a figure of a
baseline function (one was a survival curve [30], the other
was a hazard function [32]), and the third provided the
coefficients for the derived variables of the restricted cubic

Table 1 Study characteristics of prognostic model studies using flexible parametric survival models

Author (year) Country Topic area
of research

Data source Study
setting

Sample
size

Maximum follow-up
time

Timescale Event/
outcome

Number of
events

Andersson et al.
(2014) [34]

Sweden Cancer Administrative
data

Country 5850 15 years Calendar
time

Mortality 1951

Baade et al.
(2015) [33]

Australia Cancer Administrative
data

Country 870,878 21 years Calendar
time

Mortality 261,720

Baade et al.
(2015) [41]

Australia Cancer Administrative
data

Secondary
care

28,654 16 years Calendar
time

Mortality 5469

Castillo et al.
(2013) [38]

United States
of America

Cancer Administrative
data

Primary care 2284 12 years Calendar
time

Mortality 1210

Csordas et al.
(2016) [37]

Switzerland Cardiovascular Clinical data Hospital 185 222 days Calendar
time

Mortality 17

Eyre et al.
(2012) [40]

United
Kingdom

Infectious
disease

Administrative
data

Hospital 1678 4.6 years Calendar
time

Clostridium
difficile
infection
recurrence

363

Fox et al.
(2014) [32]

United
Kingdom

Cancer Clinical data Hospital 2918 Not stated Calendar
time

Mortality Not stated

Li et al.
(2016) [39]

United
Kingdom

Organ
transplant

Administrative
data

Secondary
care

12,307 10 years Calendar
time

Mortality 1503

Miladinovic et al.
(2012) [30]

United States
of America

Aging Medical
records

Hospice 590 371 days Calendar
time

Mortality 590

Myklebust et al.
(2016) [31]

Norway Cancer Administrative
data

Country 805,365 15 years Calendar
time

Mortality Not stated

Ramezani Tehrani et al.
(2016) [35]

Iran Reproductive/
perinatal

Population
survey

Community 1015 12.3 years Age Menopause 277

Sanchis et al.
(2014) [36]

Spain Cardiovascular Clinical data Hospital 342 34 months Calendar
time

Mortality 74
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spline [39]. No studies provided enough details for their
restricted cubic spline to permit the reader to use the
model for full prediction or to validate the model. Nine of
the ten Royston-Parmar prognostic models reported at
least one type of summary estimate for prediction:
prediction table (n= 4) [31, 33, 35, 41], survival curve (n = 3)
[30, 39, 41], score chart (n = 2) [32, 38], or a figure (n = 1)
[34]. The Cox proportionality assumption was considered in
nine studies [30, 31, 33–35, 37–41]. Four of these studies
tested for non-proportionality explicitly using either log-log
plots (n = 1) [39], test for proportionality using Schoenfeld
residuals (n = 1) [30], or interactions with time (n = 2)
[38, 41]. Of the other five studies, one study assumed
non-proportional hazards (n = 1), while the other four
did not report formal testing (n = 4). Three of the
nine studies included interaction terms to account for
non-proportional hazards [31, 32, 37], two of which
used a second restricted cubic splines to model the
interaction (as opposed to a linear interaction term)
[31, 32]; this restricted cubic spline is different than
the spline used to model the baseline cumulative
hazard. Of the two studies that used a restricted cubic
spline to model the interaction, neither study reported
enough details to allow the reader to reconstruct this
other restricted cubic spline. Three other studies had vio-
lations of the proportionality assumptions [38, 39, 41], but
they were not considered in the final prognostic model be-
cause the estimates and/or the model fit did not change
when non-proportionality was considered in the model.
In four studies, the Royston-Parmar model was com-

pared to another survival model (one to a Cox model
[30], two to a Weibull model [35, 39], and one to two
non-parametric approaches for estimating net survival,
the period and hybrid approaches [31]).The two studies
comparing the Royston-Parmar model to a Weibull
model reported a better fit of the baseline hazard with
the Royston-Parmar model, while the other two studies
reported improved prediction accuracy using the flexible
survival approach versus the Cox model and non-
parametric approaches. Nine studies provided at least
one benefit for using the Royston-Parmar model
(Table 4) with the main reasons being that this model
improved model accuracy (n = 5) [30, 31, 34, 35, 41] and
that they allowed the baseline function to be modeled in
a flexible manner (n = 4) [30, 32, 39, 41]. Two studies
mentioned limitations of the Royston-Parmar model,
which were the baseline hazard could be overfitted [32],
and the difficulties of interpreting a model with multiple
time-dependent effects because the hazard ratios are
dependent on more than one covariate [41].

Discussion
Our scoping review revealed that the application of the
Royston-Parmar model for prognostic modeling is not

commonly used. As of October 2016, only ten prognos-
tic models were built using a Royston-Parmar model,
even though this model was introduced in 2002 [14]. A
key advantage of Royston-Parmar model is the ability to
model the baseline log cumulative hazard function flex-
ibly with a restricted cubic spline so complex functions
can be fit and used for continuous, mathematical risk
prediction for a variety of measures like hazard rates,
differences in survival probabilities, standardized survival
functions, and cure proportions [14]. In two instances,
the developers of a Cox-based prognostic model utilized
the Royston-Parmar to complement their Cox-based
prognostic model; however, no reasons were provided as
to why the Cox PH model was selected over the
Royston-Parmar model.
The most common benefit described by the studies

was that the Royston-Parmar model improved model
accuracy (n = 5). Two studies referenced this benefit
while the other three studies that made this claim pro-
vided evidence from their data by comparing the calibra-
tion of the Royston-Parmar model to other models (e.g.,
Cox PH model), two of which used apparent validation
while the other used internal validation. While this po-
tential benefit is based on a select, few studies, if the
Royston-Parmar model does generally improve model
calibration versus other survival models, this further
advocates for the development of prognostic models
using the Royston-Parmar model, especially because the
model can easily estimate absolute measures of effect.
Reporting comparisons of performance measures (i.e.,
calibration and discrimination) between the Royston-

Table 4 Features of flexible parametric survival models reported
by the prognostic model studies

Features of flexible parametric survival models n (%)

Benefits

Additional insights of prognostic factors
versus other survival analysis models

1 (8.3)

Compute additional parameter estimates
versus other survival analysis models

1 (8.3)

Extrapolation using the linear tail of the
restricted cubic spline

2 (16.7)

Flexibly fit (/model) the baseline function 4 (33.3)

Improved model accuracy 5 (41.7)

Model time-dependent effects 1 (8.3)

Validation in other settings 2 (16.7)

No reported benefits 3 (25.0)

Limitations

Overfitting 1 (8.3)

Difficult to interpret models with more than
one time-dependent effect

1 (8.3)

No reported limitations 10 (83.3)
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Parmar model and traditional models (e.g., Cox PH
model) during model development in future studies
would clarify this benefit. One study did not mention
model accuracy as a benefit but did find better discrim-
ination in the Royston-Parmar prognostic model versus
the Cox PH prognostic model during external validation
[32]. More research is needed to understand how the
predictive performance of the Royston-Parmar model
compares to other survival models during validation, in
particular for external validation which assesses the
model’s generalizability.
The most surprising finding from this scoping review

was the lack of complete reporting around the restricted
cubic spline. The second most common strength of the
Royston-Parmar model as found in this review was that
it permitted the baseline function to be modeled in a
more flexible manner compared to parametric PH
survival models, which constrain the baseline function
to specified distributions. This benefit implies that
researchers were aware that prognostic models could
provide continuous risk prediction. Despite this benefit,
no study reported enough details to allow others to
reconstruct the baseline function for future use. Two
pieces of information related to the restricted cubic
spline are required to mathematically predict risks from
the Royston-Parmar model—the derived variables and
their coefficients. None of the studies provided enough
information to determine the derived variables, which
can only be calculated if the values of the knot positions
are provided explicitly. Only three of the studies men-
tioned the placement of the knots, all of which men-
tioned the interior knots were evenly spaced. However,
this is not sufficient information to calculate the exact
placement of the knots because the knot positions are
dependent on the distribution of the uncensored log
event times, which is data-specific. The coefficients of
the derived variables are also required, yet only one
study published them. There was also a lack of reporting
as to whether orthogonalization was performed, which is
not necessary for the post-estimation, but provides
further details as to how the restricted cubic spline was
specified. Possible reasons as to why the complete infor-
mation was not published include lack of available space
in the article or proprietary reasons. Unfortunately, by
not reporting all of the model parameter estimates such
as the restricted cubic spline used to fit the baseline log
cumulative hazard function, not only is the ability for
complete risk prediction prevented, but it stops other
researchers from applying and validating the model in
other settings. Validation was raised as a benefit by two
of the studies, yet ironically, not enough information
was provided in either study to permit validation of their
complete prognostic model. However, nine of the studies
did provide simplified methods for prediction. Based on

the scoping review findings that construction of the
baseline cumulative hazard functions were different
between studies and that the reporting of the baseline
function varied across studies, we present model-
building considerations for the baseline cumulative
hazard function and reporting suggestions for the
Royston-Parmar model to help address concerns about
overfitting and to increase the transparency of how this
model is used in practice.

Model building considerations for the baseline
cumulative hazard function
The main two considerations for modeling the baseline
cumulative hazard function with a restricted cubic spline
are the number of knots and their placement. While
previous research suggests that the baseline cumulative
hazard function of the Royston-Parmar model is
generally robust to the number and placement of knots
[14, 18, 19], we believe it is important to still examine
the number of knots and their placement to ensure the
specified restricted cubic spline fits the model well and
to understand how robust the model is to different
parameterizations of the restricted cubic spline. In terms
of the number of knots, previous research on the general
use of restricted cubic splines suggests that splines with
more than five knots are seldom required [45]. Based on
this, we recommend that restricted cubic splines ranging
from two to six knots (i.e., zero to four interior knots)
should be examined, but up to eight knots (i.e., six
interior knots) may be needed as evidenced by some
studies included in this review. The two-knot model (i.e.,
zero interior knots) is equivalent to a parametric survival
model with a Weibull distribution.
For a given number of knots, Royston and Parmar

originally suggested placing the boundary knots at the
smallest and largest uncensored log survival times and
then to place the internal knots such that they divide log
time into equal percentiles [14]. This knot placement
strategy is based on previous recommendations for knot
placement when generally using restricted cubic splines
[20]. For example, a restricted cubic spline with three
internal knots would have the internal knots positioned
at the 25th, 50th, and 75th percentiles. One simulation
study found that using this strategy, if a sufficient num-
ber of knots are used in a Royston-Parmar model, the
fitted hazard functions are similar to the true function
and that the estimated relative effects (i.e., HRs) are
insensitive to the correct specification of the baseline
function [20]. Another strategy suggested by Royston is
that for a given number of knots, the placement of the
knots can be randomized many times, and the model in
which the position of knots results in the best model fit
as measured with an information criterion (e.g., AIC,
BIC, both) is used [46]. However, selecting knot position
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in this manner may result in overfitting, and no studies
have examined this strategy on parameter estimation. A
third strategy is that if the baseline function has been
well-characterized in the literature (e.g., the model has
been previously validated), the number of knots and
their placement is based on this shape. Like the random-
ized knot strategy, no studies have looked at the effect-
iveness of this strategy.
Regardless of the strategy used, as our scoping

review found, the fitted baseline cumulative hazard
functions from different models can be compared
with a measure of information criterion (e.g., AIC,
BIC, both) or a plot of the baseline function. Plots
can help identify issues of underfitting and overfitting.
If the information criterion estimates are similar
between models, we recommend selecting the model
with fewer knots as using additional knots will
improve discrimination and/or calibration during
model development, but may lead to overfitting dur-
ing model validation. Model fit can also be examined
across different scales (i.e., PH, PO, probit), but we
recommend the choice be guided by how the model
will be used and interpreted. If the PH scale is
chosen, the robustness of the predictor regression
coefficients can be compared with the coefficients
from a Cox PH model. There are many options avail-
able to implement the Royston-Parmar model. The
most common option is the sptm2 command in Stata,
which also includes easy-to-use post-estimation tools
to measure absolute measures of effect such as hazard
rates, cumulative hazard, population-averaged survival
functions, and cure proportion. In R, the flexsurv and
Rstpm2 packages are available for modeling, with
Rstpm2 having the ability to model penalized splines.
In SAS 14.1, PROC ICPHREG in SAS is an alternative
as well. Lastly, general model building strategies for
prediction models (e.g., missing data, variable selec-
tion, validation) should also be considered when using
the Royston-Parmar model [47].

Reporting suggestions for the baseline cumulative hazard
function
Not only is it important to correctly specify the baseline
cumulative hazard function, it is also important to report
details about the baseline function. Reporting all details
about the baseline function will improve the transpar-
ency of the final model and permit other people to use
and/or validate the model. The “Methods” section
should describe in adequate detail the process of specify-
ing the restricted cubic spline, including any strategies
used to test the robustness of the restricted cubic spline
such as whether the number of knots and/or the knot
placements were varied, the types of scales examined
(e.g., PH, PO, probit), and the model selection strategies

used (e.g., information criterion and/or plots). Details
about the restricted cubic spline used to model the final
baseline cumulative hazard function should be reported
including the number of knots and the exact placements
of the knots on the log timescale (i.e., their values)—and
not just their percentiles—so the derived variables can
be determined. The coefficients of the derived variables
should also be reported. If the derived variable functions
were orthogonalized, this should also be reported.
Ideally, this information is provided in the text of the
article, but alternatives include a supplementary appen-
dix or a statement that the information can be provided
upon contact with the researchers. The code used to
model the data should also be provided to increase
transparency. The suggestions provided for reporting the
baseline cumulative hazard function here should be used
in conjunction with general reporting guidelines (e.g.,
TRIPOD, REMARK) for prognostic models so that all
aspects of model development and/or validation (e.g.,
sources of data, participants, candidate predictors, miss-
ing data, statistical analysis methods, model develop-
ment, model validation) are transparent [3, 48].

Time dependency
A feature of the Royston-Parmar model highlighted by
the creators, but was only mentioned once in our review,
was that the Royston-Parmar model permits flexible
modeling of a time-dependent effect by including a
second restricted cubic spline. Consideration of time
dependency is especially important in studies with long
follow-up time where violations of the proportionality
assumption are more likely to occur. Two of the studies
modeled time dependency using a second restricted
cubic spline in their prognostic model. However, suffi-
cient details for both the baseline and the time-
dependent restricted cubic splines must be provided for
time-dependent prediction. If time dependency is also
modeled using restricted cubic splines, its details should
be reported in a similar manner as the restricted cubic
spline used to model the baseline cumulative hazard
function. One limitation of using restricted cubic splines
for time-dependent effects is that when there is more
than one time-dependent effect, interpreting relative
effects is difficult (e.g., HR); however, absolute measures
of effect are more important for prognostic models, so the
increased precision from modeling the time-dependent
effects with restricted cubic splines may outweigh the
interpretability of the relative effects. A solution to this
limitation has been proposed where another flexible para-
metric survival model is used where the baseline log
hazard function is modeled as a restricted cubic spline (as
opposed to the log cumulative hazard function) [49].
While modeling the baseline hazard function as a
restricted cubic spline is not a new idea [50, 51], this
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model is more computationally intensive than the
Royston-Parmar model [49].

Limitations
To our knowledge, there are no subject headings in the
indexed databases for Royston-Parmar models, so our
search strategy relied on keyword searches. However,
an inherent limitation of keyword searches is that it is
limited to the title and abstract. In particular, this scop-
ing review focused on a survival analysis method that is
less likely to be described in the title and abstract com-
pared to non-methodological content (e.g., interven-
tions for disease prevention), which would reduce the
accuracy of keyword searching. Thus, the search strat-
egy may have missed articles resulting in an underesti-
mation of the number of studies that applied the
Royston-Parmar model for prognostic modeling. How-
ever, the Royston-Parmar model is a relatively novel
survival analysis method, so it is more likely to be men-
tioned in an abstract compared to a traditional method
like the Cox PH model. As well, three approaches were
used in the search strategy to be comprehensive, including
citation searches of all articles that were significant to the
creation and methodological development of the Royston-
Parmar model [14, 18–20, 22, 23, 26–29]. Despite this
wide-ranging search strategy, there was at least one
instance where an article was missed by our search strat-
egy [52]. In this instance, the abstract had no keywords
listed in the search strategy, and the citation search did
not identify the article even though the paper cited the
original paper by Royston and Parmar.

Conclusions
The feature of the Royston-Parmar model to flexibly
model the baseline log cumulative hazard function
with a restricted cubic spline for continuous mathem-
atical risk prediction of absolute measures of effect
(e.g., hazard rates, survival function) makes it an ideal
survival analysis method for prognostic modeling.
However, this scoping review shows that this model
has only been used a handful of times for prognostic
modeling in a health context. The scoping review also
showed that key pieces of information required to re-
construct the baseline restricted cubic spline are
rarely reported (i.e., the exact placement of the knots
across the uncensored log event times and the coeffi-
cients of the derived variables). We have provided
model building considerations and reporting sugges-
tions for prognostic models built using the Royston-
Parmar model to address model overfitting, enhance
transparency in model development, and aid model
validation and adaptation by others.
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