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Abstract

Background: Stability in baseline risk and estimated predictor effects both geographically and temporally is a desirable
property of clinical prediction models. However, this issue has received little attention in the methodological literature.
Our objective was to examine methods for assessing temporal and geographic heterogeneity in baseline risk and
predictor effects in prediction models.

Methods: We studied 14,857 patients hospitalized with heart failure at 90 hospitals in Ontario, Canada, in two
time periods. We focussed on geographic and temporal variation in baseline risk (intercept) and predictor effects
(regression coefficients) of the EFFECT-HF mortality model for predicting 1-year mortality in patients hospitalized
for heart failure. We used random effects logistic regression models for the 14,857 patients.

Results: The baseline risk of mortality displayed moderate geographic variation, with the hospital-specific
probability of 1-year mortality for a reference patient lying between 0.168 and 0.290 for 95% of hospitals.
Furthermore, the odds of death were 11% lower in the second period than in the first period. However, we
found minimal geographic or temporal variation in predictor effects. Among 11 tests of differences in time
for predictor variables, only one had a modestly significant P value (0.03).

Conclusions: This study illustrates how temporal and geographic heterogeneity of prediction models can be
assessed in settings with a large sample of patients from a large number of centers at different time periods.

Keywords: Clinical prediction model, Validation, Risk prediction, Hierarchical regression model, Geographic
variation, Temporal variation
Background
Clinical prediction models permit one to estimate the
probability of the presence of disease (diagnosis) or the
probability of the occurrence of adverse events for
patients with specific medical diagnoses or undergoing
specific surgical procedures or interventions (progno-
sis). Classical aspects of model validation include
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internal validation or reproducibility (how the model
performs in patients who were not included in model
development, but who are from the same underlying
population), temporal validation (how the model per-
forms on subsequent patients at the same centers at
which the model was developed), and geographic valid-
ation (how the model performs on patients from cen-
ters different from those which participated in model
development) [1–5]. The current gold standard
approach to assessing model validity is to report a sum-
mary measure of model performance, such as the con-
cordance statistic (c) or area under the ROC curve, in a
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sample different from that in which the model was
developed [6]. We have previously illustrated methods
for assessing the temporal and geographic performance
of prediction models in independent samples [7]. In the
current study, we describe how to examine the stability
of a model’s baseline risk and predictor effects across
time and geography.
Model transportability can also be examined by the

temporal or geographic stability of the baseline risk and
predictor effects. A desirable property for a prediction
model is that the estimated effects are constant across
geographic regions and across different temporal pe-
riods. Our objective was to describe and illustrate
methods for assessing such geographic and temporal sta-
bility of baseline risk and predictor effects and to pro-
vide guidance on their use. Accordingly, we analyzed
data on patients hospitalized with congestive heart fail-
ure (CHF) at 90 hospitals in two time periods.

Methods
Data source and prediction model
The current study used 7549 patients hospitalized with
CHF during the first phase of the EFFECT study phase
(April 1999 to March 2001) and 7308 patients hospitalized
with CHF during the second phase of the study (April 2004
to March 2005) [8]. Trained cardiovascular nurse abstrac-
tors retrospectively abstracted data on patient demograph-
ics, vital signs and physical examination at presentation,
medical history, and results of laboratory tests from pa-
tients’ medical records. The abstracted data were linked to
the Registered Persons Database for determination of the
vital status of each subject. These data were linked using
unique, encoded identifiers and were analyzed at the Insti-
tute for Clinical Evaluative Sciences.
The EFFECT-HF mortality prediction model for 1-

year mortality uses 11 variables: age, systolic blood
pressure on admission, respiratory rate on admission, low-
sodium serum concentration (<136 mEq/L), low serum
hemoglobin (<10.0 g/dL), serum urea nitrogen, presence
of cerebrovascular disease, presence of dementia, chronic
obstructive pulmonary disease, hepatic cirrhosis, and can-
cer [9]. For the current analyses, the four continuous vari-
ables were centered to have mean zero. This was done so
that the model intercept would be interpretable as per-
taining to a person with none of the binary (yes/no) risk
factors and who is average on all the continuous factors.
Greater details on the study sample and prediction model
are provided elsewhere [7, 9]. All analyses were conducted
in the pooled sample consisting of patients from both
phases of the study.

Exploring geographic heterogeneity
First, we fit a fixed effects logistic regression model
in which the probability of 1-year mortality was
regressed on the 11 predictors in the EFFECT-HF
model (model 1) (all models are described mathemat-
ically in the Appendix). This model ignores both
temporal and geographic variability in the probability
of 1-year mortality. From this model, we extracted
the fitted linear predictor. This is the conventional
linear predictor that would be obtained in a study
that ignored temporal and geographic effects. This
linear predictor will be used in subsequent models
where noted.
A series of random effects logistic regression models

were fit to explore geographic variation. First, we modi-
fied Model 1 by including hospital-specific random in-
tercepts (Model 2). The inclusion of random intercepts
allows one to explore geographic variation in the base-
line risk of 1-year mortality across hospitals, by allowing
the log-odds of 1-year mortality to vary across hospitals.
While the intercept was allowed to vary across hospitals,
the effect of each predictor variable was assumed to be
constant across hospitals.
We then fit a random intercept model in which

the log-odds of 1-year mortality was regressed on the
marginal linear predictor estimated from Model 1
(we refer to this new model as Model 3). This ana-
lysis allows one to assess whether the log-odds of
death for an arbitrarily-defined reference patient (one
whose linear predictor was equal to zero) varies
across hospitals. As above, the effect of the linear
predictor was assumed to be constant across hospi-
tals. Furthermore, no effect of time was considered
in this analysis. This analysis is very similar to
random effects meta-analysis of the calibration inter-
cept observed across hospitals, as explored in a
companion paper [7].
We considered an extension of Model 3 in which

the effect of the linear predictor was allowed to vary
randomly across hospitals (Model 4). This model in-
corporated both random intercepts and a random
slope. Thus, both the baseline log-odds of death for a
reference patient and the effect of the linear predictor
were allowed to vary across hospitals. This analysis is
very similar to the random effect meta-analysis of
hospital-specific calibration slopes, as explored in the
companion paper [7].
Finally, we extended Model 4 to allow the effect of

each of the 11 predictors to vary across hospitals,
after adjusting for the effect of the linear predictor
(Model 5). For this particular set of analyses, we cen-
tered the estimated linear predictor around its mean
for computational reasons. The interpretation of the
hospital-specific effect for the given predictor variable
(e.g., age) is as a difference in effect compared to the
recalibrated effect as estimated by the previous model.
A model of this form has been described previously
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when examining model validation [10]. Eleven ver-
sions of this model were fit, in which the effect of
one of the 11 predictors was allowed to vary across
hospitals, while the overall effects of the predictors
were only allowed to vary according to a calibration
slope across hospitals. So, there was essentially a ran-
dom overall factor for the remaining predictors while
we focused on the effect of one specific predictor at a
time. We also considered a variant of Model 5, where
the effect of the remaining predictors was fixed as in
Model 2, which showed similar results. For computa-
tional reasons, we were unable to fit a full random
coefficients model in which the baseline risk (inter-
cept) and all 11 predictive effects (regression coeffi-
cients) varied simultaneously across hospitals. In
settings in which P values were obtained for a set of
statistical tests, we noted the P value as larger than
the smallest value (“>”).

Exploring temporal heterogeneity
We explored heterogeneity in baseline risk across time
and between hospitals using a random intercept model
that incorporated a fixed effect denoting temporal period
and a fixed effect for the linear predictor estimated
previously (Model 6). In this model, the intercept was
allowed to vary across hospitals. Thus, this model allows
the baseline risk of 1-year mortality to vary randomly
across hospitals as well as systematically between the
two time periods.
We then considered temporal variation in the over-

all predictor effect by extending Model 6 to include
an interaction between temporal period and the linear
predictor (Model 7). This model allowed the effect of
the linear predictor to differ between the two time
periods.
In order to examine whether the effect of individual

predictors varied temporally, we considered a further
extension of the above model, replacing the linear
predictor by the 11 covariates in the EFFECT-HF
model (Model 8). The resultant model had 12 main
effects (one for the temporal period and 11 for the
individual predictors) and 11 interactions (interactions
between the temporal period and each of the predic-
tors). Thus, the effect of each of the 11 covariates
was allowed to differ between the two time periods.

Simultaneous exploration of geographic and temporal
heterogeneity of predictor effects
As an extension to Model 7, we fit a random effects
logistic regression model to explore simultaneously
geographic and temporal variation in estimated over-
all predictor effects (Model 9). This model included
a random intercept that varied across hospitals, an
effect due to the linear predictor that varied across
hospitals, a temporal effect that varied across hospi-
tals, and an interaction between these two effects
that varied across hospitals. This model permits (i)
the effect of the linear predictor to vary between
hospitals; (ii) the effect of temporal period to vary
across hospitals; and (iii) the effect of temporal
period on the predictor effects to vary across hospi-
tals. For computational reasons, we did not attempt
to fit a full random coefficients model with inter-
action by time, in which the baseline risk (intercept)
and all 11 predictive effects (regression coefficients)
could vary simultaneously across hospitals and
across time.

Results
Geographic heterogeneity
The regression coefficients were very similar for
Model 1 (fixed effects model that ignored geographic
and temporal variation) and Model 2 (random inter-
cept model with hospital-specific random intercepts)
(Table 1). For a given covariate, the regression coeffi-
cient from the second model differed by less than
0.9% from the corresponding coefficient from the
first model.
When using Model 2, the hospital-specific random

intercepts were estimated to have the following distribu-
tion: N(μ = − 1.25, σ = 0.18), with the variance being
statistically significantly different from zero (P < 0.0001).
From the above distribution, the hospital-specific 1-year
mortality rates for a reference patient (i.e., one whose
standardized covariates were all equal to zero) would lie
between 0.167 and 0.292 for 95% of hospitals. The
median odds ratio (MOR) (computed using the formula

MOR ¼ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� σ2

p
� 0:6745

� �
, where σ2 is the ran-

dom effects variance estimated above) was equal to 1.19
[11]. Thus, in comparing the odds of death for an
individual at a hospital with a higher risk of death
with the odds of death for a similar individual at a
hospital with a lower risk of death, the median odds
ratio over all possible pair-wise comparison of hospi-
tals was 1.19.
The random intercept model in which the intercept

varied across hospitals while the effect of the linear pre-
dictor was fixed (Model 3) had the following estimated
distribution for the random intercepts: N(μ = 0, σ = 0.18),
mirroring the same magnitude of between-hospital
variation that was observed above. As expected, the esti-
mated regression coefficient for the linear predictor was
close to 1 (1.01).
The random coefficient model in which both the

intercept and the effect of the linear predictor were
allowed to vary across hospitals (Model 4) was
found to provide a marginally statistically significant



Table 1 Estimated odds ratios from fixed effects and random intercept model

Variable Model 1—fixed effects model Model 2—random intercept model

Odds ratio 95% confidence interval Odds ratio 95% confidence interval

Age (per year increase) 1.042 (1.038, 1.047) 1.043 (1.039, 1.047)

Systolic blood pressure (per mmHg) 0.987 (0.985, 0.988) 0.987 (0.985, 0.988)

Respiratory rate (per breath) 1.026 (1.019, 1.032) 1.025 (1.019, 1.031)

Serum urea nitrogen 1.105 (1.096, 1.114) 1.106 (1.097, 1.115)

Low-sodium serum concentration (<136 mEq/L) 1.365 (1.249, 1.493) 1.364 (1.246, 1.493)

Low serum hemoglobin (<10.0 g/dL) 1.181 (1.057, 1.319) 1.172 (1.049, 1.310)

Cancer 1.668 (1.492, 1.864) 1.682 (1.504, 1.882)

Chronic obstructive pulmonary disease 1.331 (1.221, 1.450) 1.329 (1.219, 1.450)

Cerebrovascular disease 1.328 (1.207, 1.461) 1.326 (1.204, 1.460)

Hepatic cirrhosis 1.91 (1.253, 2.910) 1.914 (1.253, 2.924)

Dementia 2.124 (1.877, 2.402) 2.136 (1.887, 2.419)
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improvement in fit compared to the prior model in
which only the intercept varied across hospitals
(likelihood ratio test: χ2 = 6.08 (df = 2), P = 0.0478).
Assuming a normal distribution for the random ef-
fects, the effect of the linear predictor on mortality
lies between 0.76 and 1.26 for 95% of hospitals.
Finally, we considered the set of 11 random coeffi-

cient models in which the intercept, the linear
predictor, and the effect of one of the covariates were
allowed to vary across hospitals (Model 5). For each
model, we tested whether the three variance-
covariance terms associated with the covariate were
simultaneously equal to zero. For two of the models
(effect of serum urea and the effect of cancer), the
test could not be conducted for computational rea-
sons. Of the remaining nine variables, only the pres-
ence of low sodium was found to have an effect
that varied across hospitals (likelihood ratio test: χ2 =
11.43 (df = 3), P = 0.0096). However, for the remaining
eight comparisons, the simpler random coefficients
model, in which the effect of the covariate was fixed
across hospitals, was found to be acceptable (P > 0.24
for the other eight tests). For the model in which the
effect of low sodium was allowed to vary, the
hospital-specific regression coefficients for the effect
of low sodium were found to come from the fol-
lowing distribution: N(0.01, σ = 0.29). Thus, the
hospital-specific odds ratios for low sodium lay be-
tween 0.57 and 1.80 for 95% of hospitals. For all 11
models, the average effect of the covariate, after
adjusting for the linear predictor, was not statisti-
cally significant (regression-based test of fixed effect:
P > 0.69).
We conclude that there was no strong evidence for

heterogeneity in predictor effects, while baseline risks
substantially varied between hospitals.
Temporal heterogeneity
The crude (unadjusted) probability of death within
1 year was 0.325 and 0.315 in the first and second
phase, respectively. The regression coefficient for the
main effect of temporal period was −0.111 (odds ratio
0.89, 95% CI = (0.83, 0.97), P = 0.0050), in the random
intercept logistic model in which the outcome was
regressed on the linear predictor and an indicator
variable denoting temporal period (Model 6). Thus,
the adjusted odds of death were 11% lower in the
second phase than those in the first phase of the
study, providing evidence of temporal improvement in
the risk of 1-year mortality.
The interaction between the linear predictor and the

temporal period indicator was not statistically significant
(interaction point estimate = −0.007, 95% CI = (−0.094,
0.081), P = 0.883, Model 7). Thus, there was no evidence
that the effect of the linear predictor differed between
the two time periods.
When the above analysis was repeated with the lin-

ear predictor replaced by the 11 individual predictor
variables (Model 8), comparable results were observed
with one exception: while the effects of 10 of the 11
predictor variables did not change over time (test of
fixed effect from the fitted regression model: P > 0.067
for these 10 tests), the effect of cirrhosis differed be-
tween the two time periods (odds ratio 2.98 in phase
1 vs 1.12 in phase 2, P value for interaction = 0.027).

Simultaneous exploration of geographic and temporal
stability
In Model 9, we found no evidence that, on average,
the effect of the linear predictor differed between
the two time periods (interaction term = −0.0008,
95% CI = (−0.1000, 0.0984), P = 0.99). Furthermore, a
test of the hypothesis that the four variance-
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covariance terms associated with the interaction was not
statistically significant (likelihood ratio test: χ2 = 1.20
(df = 4), P = 0.88). Consequently, we refit Model 9
after eliminating the interaction term (this removed
one fixed effect—the interaction term and four
variance-covariance terms—those terms involving the
correlation between the random effect for the inter-
action and the random effects for the other three ran-
dom effects). In this reduced model, a test of the
hypothesis that the three variance-covariance terms
associated with either the temporal effect were simul-
taneously equal to zero was not statistically significant
(likelihood ratio test: χ2 = 6.25 (df = 3), P = 0.10). Con-
sequently, the effect of time did not vary across
hospitals. However, a test of the hypothesis that the
five variance-covariance terms involving the linear
predictor or the temporal effect were all simultan-
eously equal to zero was statistically significant
(likelihood ratio test: χ2 = 12.33 (df = 5), P = 0.03).
Thus, there was evidence that the effect of the linear
predictor varied across hospitals, even after account-
ing for the temporal effect. A limitation of these
analyses is that it is unclear what the statistical power
is for testing that the three variance-covariance terms
were simultaneously equal to zero. Even in our rela-
tively large dataset, the test may have low statistical
power. A second limitation is that even when the test
is statistically significant, as in the latter case, it is
unclear whether there is an appropriate measure of
effect size (aside from reporting the individual
variance-covariance terms).

Discussion
Clinical prediction models are intended for widespread
application in health care, including use in subjects dif-
ferent from those in whom the model was developed.
An emerging aspect of assessing model transportability
is assessing the heterogeneity of estimated covariate
effects across time and across centers. We illustrated
the use of random effects regression models for exam-
ining this temporal and geographic heterogeneity in
baseline risk and in the estimated predictor effects.
Using data on patients hospitalized with heart fail-

ure, we found that temporal and geographic vari-
ation in predictor effects was minimal. In contrast,
the probability of the occurrence of the outcome
(“baseline risk”) was found to vary substantially be-
tween centers and between time periods. These ana-
lyses complement classical methods for assessing
model validity reported in a companion article [7].
In this companion article, we also found that the
EFFECT-HF mortality prediction model displayed
good temporal and geographic transportability in
terms of discrimination and calibration slope when
assessed using an internal-external validation
approach. The calibration intercept varied in a simi-
lar way to the random effect estimate in the current
analyses (Models 3 and 4).
An advantage to the methods illustrated in this

paper is that they allow all subjects to be included in
model development, without the necessity of with-
holding some subjects for model validation. This in-
creases model stability, due the larger number of
subjects used for model development. In developing
prediction models, the desire is for a model that is
valid everywhere. The examination of geographic and
temporal variation in predictor effects permits an ex-
ploration of whether this holds true for a given
model. Many P values were reported to test null hy-
potheses related to stable effects of baseline risk and
predictors. Alternatively, we could qualitatively exam-
ine model performance measures, specifically calibra-
tion of predictions in time and place. While
predictor effects can be anticipated to be fixed geo-
graphically or temporally in many settings, this may
not be universally true. Certain centers may have
more experience and expertise in treating more
acutely ill patients, which could diminish the predict-
ive effect of covariates at those hospitals. A more fre-
quent occurrence is that in which the baseline line
risk of the outcome varies geographically or tempor-
ally. This can result in the developed model display-
ing lack of calibration when applied in different
settings. An example is the validation of the Fra-
mingham model to predict cardiovascular disease, in
which the baseline risk was found to vary between
ethnically diverse populations [12]. Similar systematic
miscalibration was observed for the prediction of in-
dolent prostate cancer in a clinical versus a screening
setting [13].
A limitation to relying solely on the methods described

in the current paper is the lack of a global measure of
model performance such as the c-statistic, the Brier
Score, and the generalized R2 statistic. Such measures
can be used for a comparison of the relative perform-
ance of competing prediction models. Accordingly,
assessing variation in predictor effects can best be seen
as complementary, providing important information
about the geographic and temporal portability of a
particular prediction model.
Furthermore, we were unable to fit all of the de-

sired models. We attempted to fit a random coeffi-
cients logistic regression model in which the intercept
and the effects of all 11 covariates were allowed to
vary across hospitals. In Fig. 1, we summarize graph-
ically some recommendations for assessing geographic
and temporal portability of clinical prediction models,
based on our analyses in this paper and in a



Fig. 1 Recommendations for validating clinical prediction models
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companion study [7] (note that this figure is an ex-
pansion of that provided in our earlier article in
which we did not consider temporal and geographic
stability of predictor effects). We provide recommen-
dations for scenarios ranging from the simple, con-
sisting of data from a single center at a single time
period, to the complex, consisting of data from mul-
tiple centers or hospitals at multiple time periods. We
note that estimates of heterogeneity in baseline risk
in the current paper match well with the heterogen-
eity in calibration intercept in a random effects meta-
analysis in the companion paper. Similarly, the limited
heterogeneity in effect of the linear predictor was
noted here (model 4) and in the meta-analysis of the
calibration slope in the companion paper. The exten-
sion in the current paper to heterogeneity in effect of
individual predictors overall (model 5) or by time
(model 8) is not possible in the classical approach to
model validation, although this heterogeneity should
be reflected in heterogeneity in the c-statistic.
We have described a comprehensive suite of ana-

lyses that permit one to examine geographic and
temporal stability of baseline risk and estimated co-
variate effects. However, in some settings, analysts
may not be able to apply all of these methods. For
instance, if data were only available from one time
period, then one would not be able to examine tem-
poral stability. In such a setting, one would be lim-
ited to examining geographic stability of baseline
risk and estimated covariate effects. Thus, the
described set of analyses may need to be modified to
accommodate the nature of the available data.
There are different contexts in which the methods

described in this paper may be applied in practice.
Damen et al. conducted a systematic review of predic-
tion models for cardiovascular disease in the general
population [14]. They concluded that there was a sur-
feit of models for predicting incident cardiovascular
disease. Instead of developing new prediction models,
we agree that greater energy should be expended on
externally validating existing models and on conduct-
ing head-to-head comparisons of existing models.
When considering two models whose performance on
global performance measures (e.g., the c-statistic) are
comparable, one would prefer the model that demon-
strated greater temporal and geographic stability.
Similarly, when developing a new prediction model,
one would prefer to retain those variables for which
there was temporal and geographic stability of their
effects, as this would increase the likelihood that the
model would be subsequently undergo successful
external validation.
Conclusions
The estimation-based methods described in the
current study complement classical methods for
model validation. These methods allow one to directly
examine geographic and temporal heterogeneity in
baseline risk as well as variation in predictor effects.
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Appendix
Mathematical description of statistical models used for studying model variation

Model Model description Description

Ignoring temporal and geographic variation

Model 1 logit(pij) = α0 + βXij where pij denotes the probability
of the outcome for the ith patient at the ith hospital.
From this model, we extracted the linear predictor (LPij)

Fixed effects model, ignoring temporal
and geographic heterogeneity

Models accounting for geographic heterogeneity

Model 2 logit(pij) = α0j + βXij where the hospital-specific random
effects α0j ~ N(α0, σ 2)

Random intercept model, allowing for
variation in baseline risk, but assuming
common prognostic effects

Model 3 logit(pij) = α0j + α1LPij where the hospital-specific
random effects α0j ~ N(α0, σ

2)
Rank 1 model, allowing for common
effect of the linear predictor

Model 4 logit(pij) = α0j + α1jLPij where
α0j
α1j

� �
eMVN

α0
α1

� �
;

σ21 σ12

σ12 σ22

� �� �

The distribution of the random effects was estimated
to be
α0j
α1j

� �
eMVN

0:005
1:008

� �
;

0:0444 0:0139
0:0139 0:0162

� �� �

Rank 1 model, allowing for heterogeneity
in the effect of the linear predictor

Model 5 logit(pij) = α0j + α1jLPij + α2jX1ij where
α0j
α1j
α2j

0
@

1
AeMVN

α0
α1
α2

0
@

1
A;

σ21 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ23

0
@

1
A

0
@

1
A and X1ij

denote an individual predictor (e.g., age)

Fully stratified model, allowing for
differential prognostic effects
(one model per covariate)

Models accounting for temporal heterogeneity

Model 6 logit(pij) = α0j + α1Tij + α2LPij where the hospital-specific
random effects α0j ~ N(α0, σ2) and the fixed effect for LPij

are defined as in Model 3, and Tij denotes the temporal
period (T = 0 for phase 1 vs T = 1 for phase 2)

Random intercept model with a fixed
main effect for phase 2 vs phase 1

Model 7 logit(pi) = α0j + α1Tij + α2LPij + α3Tij × LPij Random intercept model with a fixed
interaction effect for phase 2 vs phase 1.
The prognostic effect differs between
time periods

Model 8 logit(pi) = α0j + α1Xij + α2Tij + α3Tij × Xij Random intercept model that allowed
effect of each predictor to vary between
time periods

Simultaneous exploration of geographic and temporal heterogeneity of predictor effects

Model 9 logit(pij) = α0j + α1jLPij + α2jTij + α3jTij × LPij
where α0j

α1j
α2j
α3j

0
BB@

1
CCAeMVN

α0
α1
α2
α3

0
BB@

1
CCA;

σ21 σ12 σ13 σ14
σ12 σ22 σ23 σ24
σ13 σ23 σ23 σ34
σ14 σ24 σ34 σ24

0
BB@

1
CCA

0
BB@

1
CCA

The effect of the linear predictor varies
between hospitals; the effect of temporal
period varies across hospitals; and the
effect of temporal period on the predictor
effects varies across hospitals
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